期刊文献+
共找到6,531篇文章
< 1 2 250 >
每页显示 20 50 100
A novel approach of jet polishing for interior surface of small-grooved components using three developed setups
1
作者 Qinming Gu Zhenyu Zhang +6 位作者 Hongxiu Zhou Jiaxin Yu Dong Wang Junyuan Feng Chunjing Shi Jianjun Yang Junfeng Qi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期428-447,共20页
It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanw... It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanwhile keeping the structure intact.To overcome this challenge,small-grooved components made of aluminum alloy with sizes less than 1 mm were fabricated by a custom-made printer.A novel approach to multi-phase jet(MPJ)polishing is proposed,utilizing a self-developed polisher that incorporates solid,liquid,and gas phases.In contrast,abrasive air jet(AAJ)polishing is recommended,employing a customized polisher that combines solid and gas phases.After jet polishing,surface roughness(Sa)on the interior surface of grooves decreases from pristine 8.596μm to 0.701μm and 0.336μm via AAJ polishing and MPJ polishing,respectively,and Sa reduces 92%and 96%,correspondingly.Furthermore,a formula defining the relationship between linear energy density and unit defect volume has been developed.The optimized parameters in additive manufacturing are that linear energy density varies from 0.135 J mm^(-1)to 0.22 J mm^(-1).The unit area defect volume achieved via the optimized parameters decreases to 1/12 of that achieved via non-optimized ones.Computational fluid dynamics simulation results reveal that material is removed by shear stress,and the alumina abrasives experience multiple collisions with the defects on the heat pipe groove,resulting in uniform material removal.This is in good agreement with the experimental results.The novel proposed setups,approach,and findings provide new insights into manufacturing complex-structured components,polishing the small-grooved structure,and keeping it unbroken. 展开更多
关键词 abrasive air jet polishing multi-phase jet polishing interior curved surface small-grooved component aluminum alloy
下载PDF
Novel Batch Polishing Method of Ceramic Cutting Inserts for Reducing Tool Wear
2
作者 Rui Gao Chunjin Wang +3 位作者 Yee Man Loh Xiaoliang Liang Chen Jiang Chi Fai Cheung 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期74-83,共10页
Ceramic cutting inserts are a type of cutting tool commonly used in high-speed metal cutting applications.However,the wear of these inserts caused by friction between the workpiece and cutting inserts limits their ove... Ceramic cutting inserts are a type of cutting tool commonly used in high-speed metal cutting applications.However,the wear of these inserts caused by friction between the workpiece and cutting inserts limits their overall effectiveness.In order to improve the tool life and reduce wear,this study introduces an emerging method called magnetic field-assisted batch polishing(MABP)for simultaneously polishing multiple ceramic cutting inserts.Several polishing experiments were conducted under different conditions,and the wear characteristics were clarified by cutting S136H steel.The results showed that after 15 min of polishing,the surface roughness at the flank face,edge,and nose of the inserts was reduced to below 2.5 nm,6.25 nm,and 45.8 nm,respectively.Furthermore,the nose radii of the inserts did not change significantly,and there were no significant changes in the weight percentage of elements before and after polishing.Additionally,the tool life of the batch polished inserts was found to be up to 1.75 times longer than that of unpolished inserts.These findings suggest that the MABP method is an effective way to mass polish ceramic cutting inserts,resulting in significantly reduced tool wear.Furthermore,this novel method offers new possibilities for polishing other tools. 展开更多
关键词 polishing FINISHING Magnetic field-assisted Tool wear Ultra-precision machining
下载PDF
Pulsed Unipolar-Polarisation Plasma Electrolytic Polishing of Ni-Based Superalloys:A Proof of Conception
3
作者 Chuanqiang Zhou Ning Qian +3 位作者 Honghua Su Jingyuan He Wenfeng Ding Jiuhua Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期163-179,共17页
The enhanced performance of aerospace equipment drives parts development towards integration,complexity,and structural optimization.This advancement promotes metal near-net fabrication technologies like wire electrica... The enhanced performance of aerospace equipment drives parts development towards integration,complexity,and structural optimization.This advancement promotes metal near-net fabrication technologies like wire electrical discharge machining(WEDM)and 3D printing.However,the high initial surface roughness from WEDM or 3D printing poses significant challenges for the high-performance surface finishing required.To effectively reduce the surface roughness of the workpieces with high initial surface roughness,this paper proposes pulsed unipolar-polarisation plasma electrolytic polishing(PUP-PEP).The study examined the material removal mechanisms and surface polishing quality of PUP-PEP.This technique combines the high current density and material removal rate of the electrolytic polishing mode with the superior surface polishing quality of PEP through voltage waveform modulation.For an Inconel-718 superalloy part fabricated by WEDM,PUP-PEP reduced surface roughness from R_(a)7.39μm to R_(a)0.27μm in 6 min under optimal conditions.The roughness decreased from R_(a)7.39μm to R_(a)0.78μm in the first 3 min under pulsed unipolar-polarisation voltage,resulting in a remarkable 233%increase in efficiency compared to that with conventional PEP.Subsequently,the voltage output voltage is transformed into a constant voltage mode,and PEP is continued based on PUP-PEP to finally reduce the workpiece surface roughness value to R_(a)0.27μm.The proposed PUP-PEP technology marks the implementation of‘polishing’instead of conventional rough-finish machining processes,presenting a new approach to the surface post-processing of metal near-net fabrication technologies. 展开更多
关键词 Pulsed unipolar-polarisation Plasma electrolytic polishing Voltage waveform SUPERALLOY Surface roughness Material removal rate
下载PDF
Technological advancements in millet dehulling and polishing process: An insight into pretreatment methods, machineries and impact on nutritional quality
4
作者 Shagolshem Mukta Singh Jayasree Joshi T P.Srinivasa Rao 《Grain & Oil Science and Technology》 CAS 2024年第3期186-195,共10页
Millets are widely recognized for their nutritional significance;however, the methods employed for their processing are currently lacking. This article primarily focuses on the advanced technologies and progressions i... Millets are widely recognized for their nutritional significance;however, the methods employed for their processing are currently lacking. This article primarily focuses on the advanced technologies and progressions in millet dehulling and polishing. These technologies operate based on the fundamental principles of compression-shearing, abrasion-friction, and centrifugal-impact forces. Processing of millets can be challenging because of the physical characteristics and tight attachment of hull and bran to the endosperm. However, several dehullers have been designed to solve this problem for different kinds of millets. In addition, the nutritional and anti-nutritional characteristics undergo alterations due to both dehulling and polishing processes. These alterations are thoroughly examined and discussed in this article. Specifically, anti-nutrients such as tannins and phytate are predominantly found in the outer pericarp of the grain and experience a reduction after undergoing dehulling and polishing. The nutritional properties are also subjected to a reduction;however, this reduction can be mitigated by subjecting the grains to certain pretreatments before dehulling and polishing. These treatments serve to enhance dehulling efficiency and nutrient digestibility while simultaneously reducing the presence of anti-nutrients. Novel thermal and non-thermal methodologies such as microwave, hydrothermal, high-pressure processing, and ohmic heating can be employed for processing millets, thereby diminishing the loss of nutrients. Additional research can be carried out to investigate their impact on the dehulling and polishing of millets. 展开更多
关键词 MILLETS DEHULLING polishing PRETREATMENT Novel thermal and non-thermal techniques
下载PDF
Energy beam-based direct and assisted polishing techniques for diamond:A review
5
作者 Zhuo Li Feng Jiang +7 位作者 Zhengyi Jiang Zige Tian Tian Qiu Tao Zhang Qiuling Wen Xizhao Lu Jing Lu Hui Huang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期93-124,共32页
Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficu... Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficult to realize high-efficiency and ultra-low damage machining of diamond.To address these challenges,several polishing methods have been developed for both single crystal diamond(SCD)and polycrystalline diamond(PCD),including mechanical,chemical,laser,and ion beam processing methods.In this review,the characteristics and application scope of various polishing technologies for SCD and PCD are highlighted.Specifically,various energy beam-based direct and assisted polishing technologies,such as laser polishing,ion beam polishing,plasma-assisted polishing,and laser-assisted polishing,are summarized.The current research progress,material removal mechanism,and infuencing factors of each polishing technology are analyzed.Although some of these methods can achieve high material removal rates or reduce surface roughness,no single method can meet all the requirements.Finally,the future development prospects and application directions of different polishing technologies are presented. 展开更多
关键词 single crystal diamond polycrystalline diamond energy beam polishing technology material removal mechanism influencing factors
下载PDF
An Improved Angle Polishing Method for Measuring Subsurface Damage in Silicon Wafers 被引量:2
6
作者 霍凤伟 康仁科 +2 位作者 郭东明 赵福令 金洙吉 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第3期506-510,共5页
We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of... We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of subsurface damage. The bevel angle can be calculated from the interference fringes formed in the wedge. The minimum depth of the subsurface damage that can be measured by this method is a few hundred nanometers. Our results show that the method is straightforward, accurate, and convenient. 展开更多
关键词 silicon wafer subsurface damage angle polishing defect etching wedge fringes
下载PDF
STUDIES ON POLYURETHANE FOAM POLISHING TOOL
7
作者 朱纪军 左敦稳 +2 位作者 王珉 万建国 吴健 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1996年第2期86+81-85,共6页
This paper deals with Polyurethane Foam Polishing Tool (PFPT), which has three dimensional softness and are adapted to polishing sophisticated curved surfaces. The manufacturing technology, the equilibrium theory of ... This paper deals with Polyurethane Foam Polishing Tool (PFPT), which has three dimensional softness and are adapted to polishing sophisticated curved surfaces. The manufacturing technology, the equilibrium theory of matter and energy have been discussed and the PFPT is produced successfully at our laboratory. After investigating their properties, the effective factors to the behavior of the PFPT are studied. The microcosmic construction of the PFPT have been observed by sweep electron microscope(SEM) and the polishing mechanism studied. A great deal of experiments have been carried out to optimize the manufacturing parameters. 展开更多
关键词 POLYURETHANE polishing wheels curved surface polishing mechanism parameter optimization
下载PDF
Linearity of Removal in the Proeess of Optical Element Polishing
8
作者 辛企明 《Journal of Beijing Institute of Technology》 EI CAS 1992年第2期122-131,共10页
In the light of some assumptions that are very close to the practical working conditions,a very complicated polishing process of optical element can be simplified as a linear and shift invariant system that is relatd ... In the light of some assumptions that are very close to the practical working conditions,a very complicated polishing process of optical element can be simplified as a linear and shift invariant system that is relatd only to the speed,pres- sure and time of processing.In polishing,the removed material can be represented and entreated by the convolution of the removal function of polishing head and the dwell function.The properties of removal function are presented.The assumptions and methods given by the author have been shown to be correct and applicable by experiments using a ring lap to polish the optical surfac. 展开更多
关键词 optical element polishing convolution/linear and shift invariant system
下载PDF
A Computer-Controlled Polishing Machine
9
作者 辛企明 《Journal of Beijing Institute of Technology》 EI CAS 1994年第2期162-169,共8页
Describes a computer controlled polishing machine utilizing a small polisher with specified movement to figure optical surfces having strict dimensional requirements. The system is especially applicable in figuring as... Describes a computer controlled polishing machine utilizing a small polisher with specified movement to figure optical surfces having strict dimensional requirements. The system is especially applicable in figuring aspherical surfaces, beginning with the best fit sphere if the departure from the desired surface is not large. An interferometric measuring system is desiigned to form a closed loop control during processing. 展开更多
关键词 polishing(surface finishing) computer control
下载PDF
Chemical Mechanical Polishing of Glass Substrate with α-Alumina-g-Polystyrene Sulfonic Acid Composite Abrasive 被引量:9
10
作者 LEI Hong BU Naijing ZHANG Zefang CHEN Ruling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期276-281,共6页
Abrasive is the one of key influencing factors during chemical mechanical polishing(CMP) process. Currently, α-Alumina (α-Al2O3) particle, as a kind of abrasive, has been widely used in CMP slurries, but their h... Abrasive is the one of key influencing factors during chemical mechanical polishing(CMP) process. Currently, α-Alumina (α-Al2O3) particle, as a kind of abrasive, has been widely used in CMP slurries, but their high hardness and poor dispersion stability often lead to more surface defects. After being polished with composite particles, the surface defects of work pieces decrease obviously. So the composite particles as abrasives in slurry have been paid more attention. In order to reduce defect caused by pure α-Al2O3 abrasive, α-alumina-g-polystyrene sulfonic acid (α-Al2O3-g-PSS) composite abrasive was prepared by surface graft polymerization. The composition, structure and morphology of the product were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), time-of-flight secondary ion mass spectroscopy(TOF-SIMS), and scanning electron microscopy(SEM), respectively. The results show that polystyrene sulfonic acid grafts onto α-Al2O3, and has well dispersibility. Then, the chemical mechanical polishing performances of the composite abrasive on glass substrate were investigated with a SPEEDFAM-16B-4M CMP machine. Atomic force microscopy(AFM) images indicate that the average roughness of the polished glass substrate surface can be decreased from 0.835 nm for pure α-Al2O3 abrasive to 0.583 nm for prepared α-Al2O3-g-PSS core-shell abrasive. The research provides a new and effect way to improve the surface qualities during CMP. 展开更多
关键词 chemical mechanical polishing glass substrate α-alumina graft polymerization composite abrasive
下载PDF
Composite Adaptive Control of Belt Polishing Force for Aero-engine Blade 被引量:12
11
作者 ZHsAO Pengbing SHI Yaoyao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期988-996,共9页
The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot poli... The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot polishing,in particular,quality of the inlet and exhaust edges can not satisfy the processing requirements.Manual grinding has low efficiency,high labor intensity and unstable processing quality,moreover,the polished surface is vulnerable to burn,and the surface precision and integrity are difficult to ensure.In order to further improve the profile accuracy and surface quality,a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed,which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together.By the mode decision-making mechanism,Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value,and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision.Based on the mathematical model of the force-exerting mechanism,simulation analysis is implemented on DSCAC.Simulation results show that the output polishing force can better track the given signal.Finally,the blade polishing experiments are carried out on the designed polishing equipment.Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility,valve dead-time effect,valve nonlinear flow,cylinder friction,measurement noise and other interference on the control precision of polishing force,which has high control precision,strong robustness,strong anti-interference ability and other advantages compared with MRACFNN.The proposed research achieves high-precision control of the polishing force,effectively improves the blade machining precision and surface consistency,and significantly reduces the surface roughness. 展开更多
关键词 BLADE polishing force Bang-Bang control fuzzy neural network model reference adaptive control
下载PDF
Effects of Polishing on Proximate Composition,Physico-Chemical Characteristics,Mineral Composition and Antioxidant Properties of Pigmented Rice 被引量:7
12
作者 Chagam Koteswara REDDY Lalmuan KIMI +1 位作者 Sundaramoorthy HARIPRIYA Nayoung KANG 《Rice science》 SCIE CSCD 2017年第5期241-252,共12页
The effects of polishing on proximate compositions,physico-chemical characteristics,mineral compositions and antioxidant properties of the rice flours obtained from three different pigmented rice varieties(Chak-hao An... The effects of polishing on proximate compositions,physico-chemical characteristics,mineral compositions and antioxidant properties of the rice flours obtained from three different pigmented rice varieties(Chak-hao Angangba,Chak-hao Amubi and Chak-hao Poireiton) were investigated.The rice varieties were significantly(P < 0.05) different in the contents of the test characteristics.Lipids,ash,minerals,phytochemicals(phenolic acids and flavonoids) and 2,2-diphenyl-1-picrylhydrazyl(DPPH) activity of rice flours were decreased after polishing(9% degree of milling),while amylose content and lightness were increased.X-ray diffraction pattern of rice flours exhibited A-type crystalline pattern with reflections at 15.1o,17.1o,18.2o and 23.0o.Pasting properties and transition temperatures were decreased after polishing treatment.Polishing resulted in changes in the crystallinity,enthalpy and morphology of rice flours. 展开更多
关键词 amylose ANTIOXIDANT PROPERTY crystallinity GELATINIZATION mineral PIGMENTED RICE polishing pasting PROPERTY bran
下载PDF
Computer Controlled Polishing of the Off-axis Aspheric Mirrors 被引量:4
13
作者 ZHANG Xue jun,WENG Zhi cheng,ZHANG Zhong yu, WANG Quan dou,ZHANG Feng (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130022, China) 《光学精密工程》 EI CAS CSCD 2001年第5期467-473,共7页
In this paper, the manufacturing and testing procedures to make large off-axis aspherical mirrors are presented. The difficulties in polishing and testing for both circular aperture and rectangular aperture mirrors ar... In this paper, the manufacturing and testing procedures to make large off-axis aspherical mirrors are presented. The difficulties in polishing and testing for both circular aperture and rectangular aperture mirrors are previewed, and a possible solution is given. The two mirrors have been polished by means of CCOS, and the final accuracy is 25nm rms for 770mm×210mm rectangular mirror and 20nm rms for φ600mm circular mirror. These results just meet the optical tolerances specified by the designer, and the manufacturing and testing procedures presented here show good ability to make the large off-axis aspherical mirrors. 展开更多
关键词 asphere computer-controlled polishing OPTICAL TESTING
下载PDF
Material Removal Model Considering Influence of Curvature Radius in Bonnet Polishing Convex Surface 被引量:6
14
作者 SONG Jianfeng YAO Yingxue 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1109-1116,共8页
The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwe... The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwell time and controlling the surface form in the bonnet polishing has been little reported so far, but also little attention has been paid to research the material removal function of the convex surface based on the geometry model considering the influence of the curvature radius. Firstly in this paper, for realizing the control of the freeform surface automatically by the bonnet polishing, on the basis of the simplified geometric model of convex surface, the calculation expression of the polishing contact spot on the convex surface considering the influence of the curvature radius is deduced, and the calculation model of the pressure distribution considering the influence of the curvature radius on the convex surface is derived by the coordinate transformation. Then the velocity distribution model is built in the bonnet polishing the convex surface. On the basis of the above research and the semi-experimental modified Preston equation obtained from the combination method of experimental and theoretical derivation, the material removal model of the convex surface considering the influence of the curvature radius in the bonnet polishing is established. Finally, the validity of the model through the simulation method has been validated. This research presents an effective prediction model and the calculation method of material removal for convex surface in bonnet polishing and prepares for the bonnet polishing the free surface numerically and automatically. 展开更多
关键词 bonnet polishing convex surface material removal model curvature radius
下载PDF
Research on Abrasives in the Chemical Mechanical Polishing Process for Silicon Nitride Balls 被引量:6
15
作者 YUAN Ju-long, Lü Bing-hai, LIN Xü, JI Shi-ming, ZHANG Li-bin (Mechanical and Electronic Engineering College, Zhejiang University of Technology, Hangzhou 310014, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期63-64,共2页
Silicon nitride (Si 3N 4) has been the main material for balls in ceramic ball bearings, for its lower density, high strength, high hardness, fine thermal stability and anticorrosive, and is widely used in various fie... Silicon nitride (Si 3N 4) has been the main material for balls in ceramic ball bearings, for its lower density, high strength, high hardness, fine thermal stability and anticorrosive, and is widely used in various fields, such as high speed and high temperature areojet engines, precision machine tools and chemical engineer machines. Silicon nitride ceramics is a kind of brittle and hard material that is difficult to machining. In the traditional finishing process of silicon nitride balls, balls are lapped by expensive diamond abrasive. The machining is inefficiency and the cost is high, but also lots of pits, scratch subsurface micro crazes and dislocations will be caused on the surface of the balls, the performance of the ball bearings would be declined seriously. In these year, a kind of new technology known as chemical mechanical polishing is introduced in the ultraprecision machining process of ceramic balls. In this technology, abrasives such as ZrO 2, CeO 2 whose hardness is close to or lower than the work material (Si 3N 4) are used to polishing the balls. In special slurry, these abrasives can chemo-mechanically react with the work material and environment (air or water) to generate softer material (SiO 2). And the resultants will be removed easily at 0.1 nm level. So the surface defects can be minimized, very smooth surface (Ra=4 nm) and fine sphericity (0.15~0.25 μm ) can be obtained, and the machining efficiency is also improved. The action mechanism of the abrasives in the chemical mechanical polishing process in finishing of silicon nitride ball will be introduced in this paper. 展开更多
关键词 silicon nitride ball chemical mechanical polishing ABRASIVES
下载PDF
Parameters Optimization of a Novel 5-DOF Gasbag Polishing Machine Tool 被引量:8
16
作者 LI Yanbiao TAN Dapeng +2 位作者 WEN Donghui JI Shiming CAI Donghai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期680-688,共9页
The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine ... The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine tools at present, but it is disadvantaged by its complexity, big inertia, and so on. In the multi-objective parameters optimization, it is very difficult to select good parameters to achieve excellent performance of the mechanism. In this paper, a statistics parameters optimization method based on index atlases is presented for a novel 5-DOF gasbag polishing machine tool. In the position analyses, the structure and workspace for a novel 5-DOF gasbag polishing machine tool is developed, where the gasbag polishing machine tool is advantaged by its simple structure, lower inertia and bigger workspace. In the kinematics analyses, several kinematics performance evaluation indices of the machine tool are proposed and discussed, and the global kinematics performance evaluation atlases are given. In the parameters optimization process, considering the assembly technique, a design scheme of the 5-DOF gasbag polishing machine tool is given to own better kinematics performance based on the proposed statistics parameters optimization method, and the global linear isotropic performance index is 0.5, the global rotational isotropic performance index is 0.5, the global linear velocity transmission performance index is 1.012 3 m/s in the case of unit input matrix, the global rotational velocity transmission performance index is 0.102 7 rad/s in the case of unit input matrix, and the workspace volume is 1. The proposed research provides the basis for applications of the novel 5-DOF gasbag polishing machine tool, which can be applied to the modern industrial fields requiring machines with lower inertia, better kinematics transmission performance and better technological efficiency. 展开更多
关键词 5-DOF gasbag polishing machine tool evaluation index kinematics analyses parameter optimization
下载PDF
Surface Polishing of 6H-SiC Substrates 被引量:5
17
作者 Xiufang CHEN Xiangang XU Juan LI Shouzhen JIANG Lina NING Yingmin WANG Deying MA Xiaobo HU Minhua JIANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第3期430-432,共3页
The surface polishing for silicon carbide (SIC) substrates was investigated and results were presented for mechanical polishing (MP) and chemo-mechanical polishing (CMP). High quality surfaces were obtained afte... The surface polishing for silicon carbide (SIC) substrates was investigated and results were presented for mechanical polishing (MP) and chemo-mechanical polishing (CMP). High quality surfaces were obtained after CMP with colloidal silica. The removal mechanism of scratches in MP and detailed physical and chemical process during CMP were analyzed. The effects of MP and CMP on the surface roughness were assessed by optical microscopy (OM), atomic force microscopy (AFM) and step profilometry. KOH etching and high resolution X-ray diffractometry (H RXRD) were applied to evaluate the subsurface damage of 6H-SiC substrates. 展开更多
关键词 SIC Chemo-mechanical polishing (CMP) ROUGHNESS Subsurface damage
下载PDF
Numerical Analysis of Nd:YAG Pulsed Laser Polishing CVD Self-standing Diamond Film 被引量:6
18
作者 XU Feng HU Haifeng +3 位作者 ZUO Dunwen XU Chun QING Zhenghua WANG Min 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期121-127,共7页
Chemical vapor deposited (CVD) diamond film has broad application foreground in high-tech fields. But polycrystalline CVD self-standing diamond thick film has rough surface and non-uniform thickness that adversely a... Chemical vapor deposited (CVD) diamond film has broad application foreground in high-tech fields. But polycrystalline CVD self-standing diamond thick film has rough surface and non-uniform thickness that adversely affect its extensive applications. Laser polishing is a useful method to smooth self-standing diamond film. At present, attentions have been focused on experimental research on laser polishing, but the revealing of theoretical model and the forecast of polishing process are vacant. The paper presents a finite element model to simulate and analyze the mechanism of laser polishing diamond based on laser thermal conduction theory. The experimental investigation is also carried out on Nd:YAG pulsed laser smoothing diamond thick film. The simulation results have good accordance with the results of experimental results. The temperature and thermal stress fields are investigated at different incidence angles and parameters of Nd:YAG pulsed laser. The pyramidal-like roughness of diamond thick film leads to the non-homogeneous temperature fields. The temperature at the peak of diamond film is much higher than that in the valley, which leads to the smoothing of diamond thick film. The effect of laser parameters on the surface roughness and thickness of graphite transition layer is also carried out. The results show that high power density laser makes the diamond surface rapid heating, evaporation and sublimation after its graphitization. It is also found that the good polish quality of diamond thick film can be obtained by a combination of large incident angle, moderate laser pulsed energy, large repetition rate and moderate laser pulse width. The results obtained here provide the theoretical basis for laser polishing diamond film with high efficiency and high quality. 展开更多
关键词 chemical vapor deposition self-standing diamond film polishing pulsed laser finite element surface roughness
下载PDF
Preparation of Non-spherical Colloidal Silica Nanoparticle and Its Application on Chemical Mechanical Polishing of Sapphire 被引量:4
19
作者 KONG Hui LIU Weili 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第1期86-90,共5页
Non-spherical colloidal silica nanoparticle was prepared by a simple new method, and its particle size distribution and shape morphology were characterized by dynamic light scattering(DLS) and the Focus Ion Beam(FIB) ... Non-spherical colloidal silica nanoparticle was prepared by a simple new method, and its particle size distribution and shape morphology were characterized by dynamic light scattering(DLS) and the Focus Ion Beam(FIB) system. This kind of novel colloidal silica particles can be well used in chemical mechanical polishing(CMP) of sapphire wafer surface. And the polishing test proves that non-spherical colloidal silica slurry shows much higher material removal rate(MRR) with higher coefficient of friction(COF) when compared to traditional large spherical colloidal silica slurry with particle size 80 nm by DLS. Besides, sapphire wafer polished by non-spherical abrasive also has a good surface roughness of 0.460 6 nm. Therefore, non-spherical colloidal silica has shown great potential in the CMP field because of its higher MRR and better surface roughness. 展开更多
关键词 COLLOIDAL silica NANOPARTICLE NON-SPHERICAL chemical mechanical polishing SAPPHIRE WAFER
下载PDF
Surface Roughness and Roundness of Bearing Raceway Machined by Floating Abrasive Polishing and Their Effects on Bearing's Running Noise 被引量:3
20
作者 PANG Guibing QI Xuezhi +4 位作者 MA Qinyi ZHAO Xiujun WEN Chunsheng XU Wenji PENG Yanping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期543-550,共8页
As the two most important indexes of bearing raceway, surface roughness and roundness have significant influence on bearing noise. Some researchers have carried out studies in this field, however, reason and extent of... As the two most important indexes of bearing raceway, surface roughness and roundness have significant influence on bearing noise. Some researchers have carried out studies in this field, however, reason and extent of the influence of raceway surface geometric characteristics on bearing running noise are not perfectly clear up to now. In this paper, the raceway of 6309 type bearing's inner and outer ring is machined by floating abrasive polishing adopting soft abrasive pad. Surface roughness parameters, arithmetical mean deviation of the profile Ra, the point height of irregularities Rz, maximum height of the profile Rmax and roundness fof raceways, are measured before and after machining, and the change rules of the measured results are studied. The study results show that the floating abrasive polishing can reduce the surface geometric errors of bearing raceway evidently. The roundness error is reduced by 25%, Rm^x value is reduced by 35.5%, Rz value is reduced by 22% and Ra value is reduced by 5%. By analyzing the change of the geometrical parameters and the shape difference of the raceway before and after machining, it is found that the floating abrasive polishing method can affect the roundness error mainly by modifying the local deviation of the raceway's surface profile. Bearings with different raceway surface geometrical parameter value are assembled and the running noise is tested. The test results show that Ra has a little, Rmax and Rz have a measurable, and the roundness error has a significant influence on the running noise. From the viewpoint of controlling bearings' running noise, raceway roundness error should be strictly controlled, and for the surface roughness parameters, R,n^x and Rz should be mainly controlled. This paper proposes an effective method to obtain the low noise bearing by machining the raceway with floating abrasive polishing after super finishing. 展开更多
关键词 surface roughness ROUNDNESS polishing LAPPING bearing raceway noise
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部