The three-dimensional (3D) deformation effect of the slope engineering under the step-by-step excavation for the Antaibao surface mine was analyzed using the FLAC^3D technique. An optimal excavated scheme with a rel...The three-dimensional (3D) deformation effect of the slope engineering under the step-by-step excavation for the Antaibao surface mine was analyzed using the FLAC^3D technique. An optimal excavated scheme with a relatively steeper slope angle of 47° instead of 30° was successfully implemented at the west wall in the geological section 73200 of the mine area, where the 3D effect of the nonlinear large deformation of the slope was taken into account. Based on the above research conclusion, put forward the countermeasures of shortening mining length, excavating by different regions, timely foot backfilling to protect the excavated slope, and monitoring and feedback adjustment by studying the nonlinear effect. The results show that these countermeasures are effective in controlling maximum deformation and increasing the stability of the slope.展开更多
Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding roc...Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding rock mass but alsoin increasing the gas desorption capacity and gas flow permeability in the protected coal seam (PTCS). The PVCSis mined to guarantee the safe mining of the PTCS. This study has numerically evaluated the stress redistributioneffects using FLAC3D model for a longwall face in Shanxi Province. The effects of mining depth, mining height andinter-burden rock mass properties were evaluated using the stress relief angle and stress relief coefficient. Verticalstress distribution, stress relief angle and stress relief coefficient in the PTCS were analyzed as the face advancedin the PVCS. The results showed that the stress relief achieved in different locations of the PTCS varied as the faceadvanced. Sensitivity analyses on the pertinent variables indicate that the stress relief in the PTCS is affected mostby the mining depth followed by the inter-burden lithology and the mining height. Furthermore, the elastic moduliof different layers within the inter-burden rock mass are more important than their uniaxial compressive strength(UCS) and Poisson’s ratio. These observations can guide gas drainage borehole design to minimize the accidentsof coal and gas outbursts.展开更多
基金Supported by the National Natural Science Foundation of China(10572008)the Natural Science Foundation of Beijing(3063019)Doctor Foundation of Yanshan University(B245)
文摘The three-dimensional (3D) deformation effect of the slope engineering under the step-by-step excavation for the Antaibao surface mine was analyzed using the FLAC^3D technique. An optimal excavated scheme with a relatively steeper slope angle of 47° instead of 30° was successfully implemented at the west wall in the geological section 73200 of the mine area, where the 3D effect of the nonlinear large deformation of the slope was taken into account. Based on the above research conclusion, put forward the countermeasures of shortening mining length, excavating by different regions, timely foot backfilling to protect the excavated slope, and monitoring and feedback adjustment by studying the nonlinear effect. The results show that these countermeasures are effective in controlling maximum deformation and increasing the stability of the slope.
基金This paper was supported by the Natural Science Foundation of Jiangsu Higher Education Institutions(No.20KJB440002)the National Natural Science Foundation of China(Project Nos.51804129,51808246 and 51904112)+5 种基金China Postdoctoral Science Foundation(No.2020M671301)the Postdoctoral Science Foundation of Jiangsu Province(Nos.2019K139 and 2019Z107)the Huai’an Science and Technology Plan project(No.HAB201836)the Industry Education Research Cooperation Projects in Jiangsu Province(No.BY2020007)Undergraduate Innovation and Entrepreneurship Training Program(No.202011049111XJ)the Foundation of Huaiyin Institute of Technology(No.Z301B20530).
文摘Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding rock mass but alsoin increasing the gas desorption capacity and gas flow permeability in the protected coal seam (PTCS). The PVCSis mined to guarantee the safe mining of the PTCS. This study has numerically evaluated the stress redistributioneffects using FLAC3D model for a longwall face in Shanxi Province. The effects of mining depth, mining height andinter-burden rock mass properties were evaluated using the stress relief angle and stress relief coefficient. Verticalstress distribution, stress relief angle and stress relief coefficient in the PTCS were analyzed as the face advancedin the PVCS. The results showed that the stress relief achieved in different locations of the PTCS varied as the faceadvanced. Sensitivity analyses on the pertinent variables indicate that the stress relief in the PTCS is affected mostby the mining depth followed by the inter-burden lithology and the mining height. Furthermore, the elastic moduliof different layers within the inter-burden rock mass are more important than their uniaxial compressive strength(UCS) and Poisson’s ratio. These observations can guide gas drainage borehole design to minimize the accidentsof coal and gas outbursts.