In this study we investigated the enrichment ability of oxidized multiwalled carbon nanotubes (MWCNTs) and established a new method for the determination of trace cadmium in environment with flame atomic absorption ...In this study we investigated the enrichment ability of oxidized multiwalled carbon nanotubes (MWCNTs) and established a new method for the determination of trace cadmium in environment with flame atomic absorption spectrometry. The MWCNTs were oxidized by potassium permanganate under appropriate conditions before use as preconcentration packing. Parameters influencing the recoveries of target analytes were optimized. Under optimal conditions, the target analyte exhibited a good linearity (R^2=0.9992) over the concentration range 0.5-50 ng/ml. The detection limit and precision of the proposed method were 0.15 ng/ml and 2.06%, respectively. The proposed method was applied to the determination of cadmium in real-world environmental samples and the recoveries were in the range of 91.3%-108.0%. All these experimental results indicated that this new procedure could be applied to the determination of trace cadmium in environmental waters.展开更多
A procedure for the preconcentration of copper was described in this paper using multi-walled carbon nanotubes (MWCNTs) oxidized by potassium permanganate as the adsorbent for the enrichment of trace copper in water s...A procedure for the preconcentration of copper was described in this paper using multi-walled carbon nanotubes (MWCNTs) oxidized by potassium permanganate as the adsorbent for the enrichment of trace copper in water samples. Important parameters, such as the sample pH, the concentration and volume of eluent, sample flow rate and volume, and interference of coexisting ions, were investigated. The obtained results indicated that proposed method possessed an excellent analytical performance. The linear range, the detection limit, and precison (RSD) were 1–100 ng/mL (R(2) = 0.9993), 0.32 ng/mL and 2.88%, respectively. The results showed that copper could be adsorbed quantitatively on the pretreated MWCNTs with potassium permanganate, and proposed method was very useful in the monitoring of copper in the environment.展开更多
A simple and sensitive solid phase extraction utilizing C18 filled cartridges incorporated with dithizone for preconcentration of lead and its subsequent determination by flame atomic absorption spectrometry (FAAS) wa...A simple and sensitive solid phase extraction utilizing C18 filled cartridges incorporated with dithizone for preconcentration of lead and its subsequent determination by flame atomic absorption spectrometry (FAAS) was developed. Several parameters such as type, concentration and volume of eluent, pH of the sample solution, flow rate of extraction and volume of the sample were evaluated. The effect of a variety of ions on preconcentration and recovery was also investigated. At pH = 7.4 and 1.0 mol?L–1 HCl eluting them, lead ions were recovered quantitatively. The limit of detection (LOD) defined as 3Sbl was determined to be 8.1 μg L–1 for 500 mL of sample solution and eluted with 5 mL of 1.0 mol?L–1 HCl under optimum conditions. The accuracy and precision (RSD %) of the method were >90% and <10%, respectively. In the end, the proposed method was applied to a number of real sugar samples and the amount of lead was determined by spiking a known concentration of lead into the solution.展开更多
The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward heavy elements has been investigated systemically, and a new method has been developed for the determination of trace elements in water samples ...The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward heavy elements has been investigated systemically, and a new method has been developed for the determination of trace elements in water samples based on preconcentration with mini-column packed with MWNTs prior to its determination by flame atomic absorption spectrometry (FAAS) The recommended parameters of proposed method influencing the preconcentration of the analytes, such as pH of the sample, sample flow rate and volume, elute solution and interfering ions, have been used. Under the optimized conditions, the calibration graphs were linear with the correlation coefficient range 0.9981-0.9995. According to the results, the metals were found 0.019-0.051, 0.011-0.031, 0.00-0.081, 0.00-0.0002, 0.007-0.0925, 0.00-0.0104 μg/L in water samples for Pb, Mn, Zn, Cd, Fe, Cu respectively. The percentage relative standard deviation (%RSD) for five replicate samples were 〈 5% in all cases. The method has been successfully applied to the determination of trace elements in some environmental samples with satisfactory results.展开更多
Cloud point extraction (CPE) has been used for the preconcentration of cadmium, after the formation of a complex with 1, 5-bis(di-2-pyridylmethylene) thiocarbonohydrazide (DPTH), and further determination by flame ato...Cloud point extraction (CPE) has been used for the preconcentration of cadmium, after the formation of a complex with 1, 5-bis(di-2-pyridylmethylene) thiocarbonohydrazide (DPTH), and further determination by flame atomic absorption spectrometry (FAAS) using Triton X-114 as surfactant. The main factors affecting the CPE, such as concentration of Triton X-114 and DPTH, pH, equilibration temperature and incubation time, were optimized for the best extract efficiency. Under the optimum conditions i.e., pH 5.4, [DPTH] = 6x10-3%, [Triton X-114] = 0.25% (v/v), an enhancement factor of 10.5 fold was reached. The lower limit of detection (LOD) obtained under the optimal conditions was 0.95 μg L?1. The precision for 8 replicate deter- minations at 20 and 100 μgL?1 Cd were 2.4 % and 2 % relative standard deviation (R.S.D.). The calibration graph using the preconcentration method was linear with a correlation coefficient of 0,998 at levels close to the detection limit up to at least 200 μgL?1. The method was successfully applied to the determination of cadmium in water, environmental and food samples and in a BCR-176 standard reference material.展开更多
A fast and simple method for preconcentration of Ni^2+, Cd^2+, Pb^2+, Zn^2+, Cu^2+ and Co^2+ from natural water samples was developed. The metal ions were complexed with sodium diethyldithiocarbamate (Na-DDTC)...A fast and simple method for preconcentration of Ni^2+, Cd^2+, Pb^2+, Zn^2+, Cu^2+ and Co^2+ from natural water samples was developed. The metal ions were complexed with sodium diethyldithiocarbamate (Na-DDTC), then adsorbed onto octadecyl silica membrane disk, recovered and determined by FAAS. Extraction efficiency, influence of sample volume and eluent flow rates, effects of pH, amount of Na-DDTC, nature and amount of eluent for elution of metal ions from membrane disk, break through volume and limit of detection have been evaluated. The effect of foreign ions on the percent recovery of heavy metal ions has also been studied. The limit of detection of the proposed method for Ni^2+, Cd^2+, Pb^2+, Zn^2+, Cu^2+ and Co^2+was found to be 2.03, 0.47, 3.13, 0.44, 1.24 and 2.05 ng·mL^-1, respectively. The proposed (DDTC) method has been successfully applied to the recovery and determination of heavy metal ions in different water samples.展开更多
A sensitive and simple solid phase extraction method for the simultaneous determination of trace and toxic metals in environmental samples has been reported. The method is based on the adsorption of Zinc, Iron and Cop...A sensitive and simple solid phase extraction method for the simultaneous determination of trace and toxic metals in environmental samples has been reported. The method is based on the adsorption of Zinc, Iron and Copper on SDS-coated alumina nanoparticles, which is also modified with 3-mercapto-D-valine. The retained analyte ions on modified solid phase were eluted using 5 mL of 4 mol·L﹣1 HNO3. The analyte determination was carried out by flame atomic absorption spectrometry. The influences of some metal ion and anions on the recoveries of understudy analyte ion were investigated. The influences of the analytical parameters including pH, ligand and SDS amount, eluting solution (type and concentrations) and sample volume on metal ions recoveries were investigated. The extraction efficiency was > 98% with relative standard deviation lower than 3% the method has been successfully applied for the extraction and determination of these ions content in some real samples. Prepared adsorbent was characterized by SEM and FT-IR measurements.展开更多
A novel and selective method for the fast determination of trace amounts of chromium species in water samples has been developed. The procedure is based on the selective formation of chromium diethyldithiocarbamate co...A novel and selective method for the fast determination of trace amounts of chromium species in water samples has been developed. The procedure is based on the selective formation of chromium diethyldithiocarbamate complexes at different pH in the presence of Mn(Ⅱ) as an enhancement agent of chromium signals followed by elution with organic eluents and determination by atomic flame absorption spectrometry. The maximum capacity of the employed disks was found to be (396±3) pg and (376±2) pg for Cr(Ⅲ) and Cr(Ⅵ), respectively. The detection limit of the proposed method is 49 and 43 ng·L^-1 for Cr(Ⅲ) and Cr(Ⅵ), respectively. The proposed method was successfully applied for determination of chromium species Cr(Ⅲ) and Cr(Ⅵ) in different water samples.展开更多
A simple and reproducible method for the rapid extraction and determination of trace amounts of copper(Ⅱ) ions using octadecyl-bonded silica membrane disks modified by 1,5-diphenylcarbazide (DPC) and atomic absor...A simple and reproducible method for the rapid extraction and determination of trace amounts of copper(Ⅱ) ions using octadecyl-bonded silica membrane disks modified by 1,5-diphenylcarbazide (DPC) and atomic absorption spectrometry was presented, which was based on complex formation on the surface of the ENVI-18 DISK^TM disks followed by stripping of the retained species by minimum amounts of appropriate organic solvents. The elution was efficient and quantitative. The effect of potential interfering ions, pH, ligand amount, stripping solvent, and sample flow rate were also investigated. Under the optimal experimental conditions, the break-through volume was found to be about 1000 mL providing a preconcentration factor of 400. The maximum capacity of the disks was found to be (255±5) lag for Cu^2+, and the limit of detection of the proposed method was 5 ng per 1000 mL. The method was applied to the extraction and recovery of copper in different water samples.展开更多
A simple and reproducible method for the rapid extraction and determination of trace amounts of copper(Ⅱ) ions using octadecyl-bonded silica membrane disks modified by N,N′-disalicylideneethylenediamine (DESDA) ...A simple and reproducible method for the rapid extraction and determination of trace amounts of copper(Ⅱ) ions using octadecyl-bonded silica membrane disks modified by N,N′-disalicylideneethylenediamine (DESDA) and atomic absorption spectrometry was presented. The method is based on complex formation on the surface of the ENVI-18 DISK^TM disks followed by stripping of the retained species by minimum amounts of appropriate organic solvents. The elution is efficient and quantitative. The effects of potential interfering ions, pH, ligand amount, stripping solvent, and sample flow rate were also investigated. Under the optimal experimental conditions, the break-through volume was found to about be 1000 mL providing a preconcentration factor of 500. The maximum capacity of the disks was found to be (389±4) μg for Cu^2+. The limit of detection of the proposed method is 5 ng per liter. The method was applied to the extraction and recovery of copper in different water samples.展开更多
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No.2006AA06Z424)Personal Innovation Foundation of Universities in Henan Province (No.[2005]-126)+1 种基金Youth Science Foundation of Henan Normal University (No.2004005)Natural Science Foundation of Henan Province (No.072300460010).
文摘In this study we investigated the enrichment ability of oxidized multiwalled carbon nanotubes (MWCNTs) and established a new method for the determination of trace cadmium in environment with flame atomic absorption spectrometry. The MWCNTs were oxidized by potassium permanganate under appropriate conditions before use as preconcentration packing. Parameters influencing the recoveries of target analytes were optimized. Under optimal conditions, the target analyte exhibited a good linearity (R^2=0.9992) over the concentration range 0.5-50 ng/ml. The detection limit and precision of the proposed method were 0.15 ng/ml and 2.06%, respectively. The proposed method was applied to the determination of cadmium in real-world environmental samples and the recoveries were in the range of 91.3%-108.0%. All these experimental results indicated that this new procedure could be applied to the determination of trace cadmium in environmental waters.
文摘A procedure for the preconcentration of copper was described in this paper using multi-walled carbon nanotubes (MWCNTs) oxidized by potassium permanganate as the adsorbent for the enrichment of trace copper in water samples. Important parameters, such as the sample pH, the concentration and volume of eluent, sample flow rate and volume, and interference of coexisting ions, were investigated. The obtained results indicated that proposed method possessed an excellent analytical performance. The linear range, the detection limit, and precison (RSD) were 1–100 ng/mL (R(2) = 0.9993), 0.32 ng/mL and 2.88%, respectively. The results showed that copper could be adsorbed quantitatively on the pretreated MWCNTs with potassium permanganate, and proposed method was very useful in the monitoring of copper in the environment.
文摘A simple and sensitive solid phase extraction utilizing C18 filled cartridges incorporated with dithizone for preconcentration of lead and its subsequent determination by flame atomic absorption spectrometry (FAAS) was developed. Several parameters such as type, concentration and volume of eluent, pH of the sample solution, flow rate of extraction and volume of the sample were evaluated. The effect of a variety of ions on preconcentration and recovery was also investigated. At pH = 7.4 and 1.0 mol?L–1 HCl eluting them, lead ions were recovered quantitatively. The limit of detection (LOD) defined as 3Sbl was determined to be 8.1 μg L–1 for 500 mL of sample solution and eluted with 5 mL of 1.0 mol?L–1 HCl under optimum conditions. The accuracy and precision (RSD %) of the method were >90% and <10%, respectively. In the end, the proposed method was applied to a number of real sugar samples and the amount of lead was determined by spiking a known concentration of lead into the solution.
文摘The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward heavy elements has been investigated systemically, and a new method has been developed for the determination of trace elements in water samples based on preconcentration with mini-column packed with MWNTs prior to its determination by flame atomic absorption spectrometry (FAAS) The recommended parameters of proposed method influencing the preconcentration of the analytes, such as pH of the sample, sample flow rate and volume, elute solution and interfering ions, have been used. Under the optimized conditions, the calibration graphs were linear with the correlation coefficient range 0.9981-0.9995. According to the results, the metals were found 0.019-0.051, 0.011-0.031, 0.00-0.081, 0.00-0.0002, 0.007-0.0925, 0.00-0.0104 μg/L in water samples for Pb, Mn, Zn, Cd, Fe, Cu respectively. The percentage relative standard deviation (%RSD) for five replicate samples were 〈 5% in all cases. The method has been successfully applied to the determination of trace elements in some environmental samples with satisfactory results.
文摘Cloud point extraction (CPE) has been used for the preconcentration of cadmium, after the formation of a complex with 1, 5-bis(di-2-pyridylmethylene) thiocarbonohydrazide (DPTH), and further determination by flame atomic absorption spectrometry (FAAS) using Triton X-114 as surfactant. The main factors affecting the CPE, such as concentration of Triton X-114 and DPTH, pH, equilibration temperature and incubation time, were optimized for the best extract efficiency. Under the optimum conditions i.e., pH 5.4, [DPTH] = 6x10-3%, [Triton X-114] = 0.25% (v/v), an enhancement factor of 10.5 fold was reached. The lower limit of detection (LOD) obtained under the optimal conditions was 0.95 μg L?1. The precision for 8 replicate deter- minations at 20 and 100 μgL?1 Cd were 2.4 % and 2 % relative standard deviation (R.S.D.). The calibration graph using the preconcentration method was linear with a correlation coefficient of 0,998 at levels close to the detection limit up to at least 200 μgL?1. The method was successfully applied to the determination of cadmium in water, environmental and food samples and in a BCR-176 standard reference material.
文摘A fast and simple method for preconcentration of Ni^2+, Cd^2+, Pb^2+, Zn^2+, Cu^2+ and Co^2+ from natural water samples was developed. The metal ions were complexed with sodium diethyldithiocarbamate (Na-DDTC), then adsorbed onto octadecyl silica membrane disk, recovered and determined by FAAS. Extraction efficiency, influence of sample volume and eluent flow rates, effects of pH, amount of Na-DDTC, nature and amount of eluent for elution of metal ions from membrane disk, break through volume and limit of detection have been evaluated. The effect of foreign ions on the percent recovery of heavy metal ions has also been studied. The limit of detection of the proposed method for Ni^2+, Cd^2+, Pb^2+, Zn^2+, Cu^2+ and Co^2+was found to be 2.03, 0.47, 3.13, 0.44, 1.24 and 2.05 ng·mL^-1, respectively. The proposed (DDTC) method has been successfully applied to the recovery and determination of heavy metal ions in different water samples.
文摘A sensitive and simple solid phase extraction method for the simultaneous determination of trace and toxic metals in environmental samples has been reported. The method is based on the adsorption of Zinc, Iron and Copper on SDS-coated alumina nanoparticles, which is also modified with 3-mercapto-D-valine. The retained analyte ions on modified solid phase were eluted using 5 mL of 4 mol·L﹣1 HNO3. The analyte determination was carried out by flame atomic absorption spectrometry. The influences of some metal ion and anions on the recoveries of understudy analyte ion were investigated. The influences of the analytical parameters including pH, ligand and SDS amount, eluting solution (type and concentrations) and sample volume on metal ions recoveries were investigated. The extraction efficiency was > 98% with relative standard deviation lower than 3% the method has been successfully applied for the extraction and determination of these ions content in some real samples. Prepared adsorbent was characterized by SEM and FT-IR measurements.
文摘A novel and selective method for the fast determination of trace amounts of chromium species in water samples has been developed. The procedure is based on the selective formation of chromium diethyldithiocarbamate complexes at different pH in the presence of Mn(Ⅱ) as an enhancement agent of chromium signals followed by elution with organic eluents and determination by atomic flame absorption spectrometry. The maximum capacity of the employed disks was found to be (396±3) pg and (376±2) pg for Cr(Ⅲ) and Cr(Ⅵ), respectively. The detection limit of the proposed method is 49 and 43 ng·L^-1 for Cr(Ⅲ) and Cr(Ⅵ), respectively. The proposed method was successfully applied for determination of chromium species Cr(Ⅲ) and Cr(Ⅵ) in different water samples.
文摘A simple and reproducible method for the rapid extraction and determination of trace amounts of copper(Ⅱ) ions using octadecyl-bonded silica membrane disks modified by 1,5-diphenylcarbazide (DPC) and atomic absorption spectrometry was presented, which was based on complex formation on the surface of the ENVI-18 DISK^TM disks followed by stripping of the retained species by minimum amounts of appropriate organic solvents. The elution was efficient and quantitative. The effect of potential interfering ions, pH, ligand amount, stripping solvent, and sample flow rate were also investigated. Under the optimal experimental conditions, the break-through volume was found to be about 1000 mL providing a preconcentration factor of 400. The maximum capacity of the disks was found to be (255±5) lag for Cu^2+, and the limit of detection of the proposed method was 5 ng per 1000 mL. The method was applied to the extraction and recovery of copper in different water samples.
文摘A simple and reproducible method for the rapid extraction and determination of trace amounts of copper(Ⅱ) ions using octadecyl-bonded silica membrane disks modified by N,N′-disalicylideneethylenediamine (DESDA) and atomic absorption spectrometry was presented. The method is based on complex formation on the surface of the ENVI-18 DISK^TM disks followed by stripping of the retained species by minimum amounts of appropriate organic solvents. The elution is efficient and quantitative. The effects of potential interfering ions, pH, ligand amount, stripping solvent, and sample flow rate were also investigated. Under the optimal experimental conditions, the break-through volume was found to about be 1000 mL providing a preconcentration factor of 500. The maximum capacity of the disks was found to be (389±4) μg for Cu^2+. The limit of detection of the proposed method is 5 ng per liter. The method was applied to the extraction and recovery of copper in different water samples.