The flame technology has been employed broadly for large-scale manufacture of carbon blacks, fumed silica, pigmentary titania, and also ceramic commodities such as SiO2, Ti02, and A1203. A deeper understanding of the ...The flame technology has been employed broadly for large-scale manufacture of carbon blacks, fumed silica, pigmentary titania, and also ceramic commodities such as SiO2, Ti02, and A1203. A deeper understanding of the process also made it possible for production of novel nanomaterials with high functionality--various novel nanomaterials such as nanorods, nanowires, nanotubes, nanocoils, and nanocomposites with core/shell, hollow and ball-in-shell structures, have been synthesized recently via gas combustion technology, while the mechanisms of the material formation were investigated based on the nucleation-growth and chemical engineering principles. Studies of the fluid flow and mass mixing, supported by principles of chemical reaction engineering, could provide knowledge for better understanding of the process, and thus make rational manipulation of the products possible.展开更多
基金support of the National Natural Science Foundation of China(20925621,20906027,20706015)the Program of Shanghai Subject Chief Scientist(08XD1401500)+3 种基金the Shanghai Shuguang Scholars Tracking Program(08GG09)the Special Projects for Key Laboratories in Shanghai(09DZ2202000)the Special Projects for Nanotechnology of Shanghai(0852nm02000,0952nm02100,0952nm02100)the Shanghai Pujiang Program(09PJ1403200)
文摘The flame technology has been employed broadly for large-scale manufacture of carbon blacks, fumed silica, pigmentary titania, and also ceramic commodities such as SiO2, Ti02, and A1203. A deeper understanding of the process also made it possible for production of novel nanomaterials with high functionality--various novel nanomaterials such as nanorods, nanowires, nanotubes, nanocoils, and nanocomposites with core/shell, hollow and ball-in-shell structures, have been synthesized recently via gas combustion technology, while the mechanisms of the material formation were investigated based on the nucleation-growth and chemical engineering principles. Studies of the fluid flow and mass mixing, supported by principles of chemical reaction engineering, could provide knowledge for better understanding of the process, and thus make rational manipulation of the products possible.