The 3D model of flapping wing mechanism and veins is constructed in 3D computer aided design (CAD) software UG.Then the co-simulation model is established by using multibody dynamics software ADAMS and MATLAB.The vali...The 3D model of flapping wing mechanism and veins is constructed in 3D computer aided design (CAD) software UG.Then the co-simulation model is established by using multibody dynamics software ADAMS and MATLAB.The validation of this co-simulation model is verified by comparing the simulation results with final experiments.The simulation results and experiments reveal that the relation between flapping frequency and driving voltage of motor is approximately linear under various wingspans.The variance of flapping frequency among different wingspans augments gradually with increasing voltage.Furthermore,the simulation results suggest that flapping frequency is sensitive to wingspan and decreases with increasing wingspan of veins,and the relation between flapping frequency and moment of inertia of veins is also approximately linear for various voltages.展开更多
基金the National Natural Science Foundationof China(No.60375033)
文摘The 3D model of flapping wing mechanism and veins is constructed in 3D computer aided design (CAD) software UG.Then the co-simulation model is established by using multibody dynamics software ADAMS and MATLAB.The validation of this co-simulation model is verified by comparing the simulation results with final experiments.The simulation results and experiments reveal that the relation between flapping frequency and driving voltage of motor is approximately linear under various wingspans.The variance of flapping frequency among different wingspans augments gradually with increasing voltage.Furthermore,the simulation results suggest that flapping frequency is sensitive to wingspan and decreases with increasing wingspan of veins,and the relation between flapping frequency and moment of inertia of veins is also approximately linear for various voltages.