期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Morphometric Analysis and Flash Floods Assessment for Drainage Basins of the Ras En Naqb Area, South Jordan Using GIS 被引量:2
1
作者 Yahya Farhan Omar Anaba Ali Salim 《Journal of Geoscience and Environment Protection》 2016年第6期9-33,共25页
Morphometric analysis and flash floods assessment were conducted for the watersheds of Ras En Naqb escarpment, south Jordan. The study area comprises of twelve small watersheds occupying the faulted-erosional slopes, ... Morphometric analysis and flash floods assessment were conducted for the watersheds of Ras En Naqb escarpment, south Jordan. The study area comprises of twelve small watersheds occupying the faulted-erosional slopes, and the dip slopes. The drainage network shows that dendritic and sub-dendritic patterns dominated the dip slopes, whereas trellis pattern characterized the faulted-erosional slopes. Stream orders range from fourth to sixth order. The mean bifurcation ratios vary between 4.2 and 5.38 for the dip slope basins, and between 3.5 and 5.0 for the faulted-erosional slope watersheds, indicating a noticeable influence of structural disturbances (i.e., faulting and uplifting), and rejuvenation of drainage networks. All watersheds have short basin lengths, ranging from 23.8 km to 42.2 km for the dip slope basins, and between 15.3 km and 45.4 km for the faulted-erosional slope catchments. This is indicative of high flooding susceptibility associated with heavy rainstorms of short duration. The circularity ratios range from 0.177 to 0.704 which denote that the catchments are moderately circular on the faulted-erosional slopes, and to some extent elongated on the dip slopes. The length of overland flow values ranges from 0.854 to 0.924 for the dip slope catchments, whereas L<sub>O</sub> values for the faulted-erosional slopes vary from 0.793 to 0.945 denoting steep slopes and shorter paths on both dip slope and faulted-erosional slope watersheds. Values of stream frequency range from 1.509 to 1.692 for the dip slope, and from 1.688 to 2.0 for the faulted-erosional slope catchments. F<sub>S</sub> values are also indicative of slope steepness, low infiltration rate, and high flooding potential. The watersheds of the dip slopes show lower values of form factor varying from 0.079 to 0.364, indicating elongated shape and suggesting a relatively flat hydrograph peak for longer duration. Similarly, values of D<sub>d</sub> are high for catchments on the dip slope basins (1.709 - 1.85) and the faulted-erosional slope watersheds (1.587 - 2.0) indicating highly dissected topography, high surface runoff, low infiltration rate, and consequently high flooding potential. Furthermore, high relief values exist, ranging from 388 m to 714 m for the dip slope basins, and from 421 m to 846 m for the faulted-erosional slope catchments indicting high relief and steep slopes. Morphometric analysis, and flash flood assessment suggest that ten watersheds (83.3%) are categorized under high and intermediate flooding susceptibility, and the faulted-erosional slope catchments are more hazardous in terms of flooding. Thus the protection of Ma’an, El Jafr rural Bedouin settlements, and Amman-Aqaba highway from recurrent flooding is essential to ensure sustainable future development in Ras En Naqb-Ma’an area. 展开更多
关键词 Ras En Naqb Escarpment flash flood assessment Dip Slopes Faulted-Erosional Slopes Hypsometric Integral JORDAN
下载PDF
Implementation of Remote Sensing and GIS Techniques to Study the Flash Flood Risk at NEOM Mega-City, Saudi Arabia
2
作者 Ahmed A. Abdulalim Tarek A. El Damaty 《Advances in Remote Sensing》 2022年第4期121-157,共37页
Southern Red Sea flooding is common. Assessing flood-prone development risks helps decrease life and property threats. It tries to improve flood awareness and advocate property owner steps to lessen risk. DEMs and top... Southern Red Sea flooding is common. Assessing flood-prone development risks helps decrease life and property threats. It tries to improve flood awareness and advocate property owner steps to lessen risk. DEMs and topography data were analyzed by RS and GIS. Fifth-through seventh-order rivers were studied. Morphometric analysis assessed the area’s flash flood danger. NEOM has 14 catchments. We determined each catchment’s area, perimeter, maximum length, total stream length, minimum and maximum elevations. It also uses remote sensing. It classifies Landsat 8 photos for land use and cover maps. Image categorization involves high-quality Landsat satellite images and secondary data, plus user experience and knowledge. This study used the wetness index, elevation, slope, stream power index, topographic roughness index, normalized difference vegetation index, sediment transport index, stream order, flow accumulation, and geological formation. Analytic hierarchy considered all earlier criteria (AHP). The geometric consistency index GCI (0.15) and the consistency ratio CR (4.3%) are calculated. The study showed five degrees of flooding risk for Wadi Zawhi and four for Wadi Surr, from very high to very low. 9.16% of Wadi Surr is vulnerable to very high flooding, 50% to high flooding, 40% to low flooding, and 0.3% to very low flooding. Wadi Zawhi’s flood risk is 0.23% high, moderate, low, or extremely low. They’re in Wadi Surr and Wadi Zawhi. Flood mapping helps prepare for emergencies. Flood-prone areas should prioritize resilience. 展开更多
关键词 Geographic Information System (GIS) Remote Sensing flash floods Hazard assessment Analytic Hierarchy Process (AHP) Morphometric Analysis Hydrology Analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部