用传统的无压烧结工艺制备出稀土元素La掺杂的高度透明纯钙钛矿相0.88Pb(Mg1/3Nb2/3)O3-0.12Pb Ti O3(简称0.88PMN-0.12PT)铁电陶瓷。当陶瓷样品厚度为0.8 mm时,在1550 nm处透光率达67%,接近其理论极限。电滞回线测量结果表明该组分透...用传统的无压烧结工艺制备出稀土元素La掺杂的高度透明纯钙钛矿相0.88Pb(Mg1/3Nb2/3)O3-0.12Pb Ti O3(简称0.88PMN-0.12PT)铁电陶瓷。当陶瓷样品厚度为0.8 mm时,在1550 nm处透光率达67%,接近其理论极限。电滞回线测量结果表明该组分透明陶瓷为典型的弛豫铁电体。显微结构观察结果表明陶瓷非常致密,晶粒排列规则,晶界结合强度高,多呈穿晶断裂,晶界干净,且厚度<2 nm。展开更多
Nickel-rich cathode materials are increasingly being applied in commercial lithium-ion batteries to realize higher specific capacity as well as improved energy density.However,low structural stability and rapid capaci...Nickel-rich cathode materials are increasingly being applied in commercial lithium-ion batteries to realize higher specific capacity as well as improved energy density.However,low structural stability and rapid capacity decay at high voltage and temperature hinder their rapid large-scale application.Herein,a wet chemical method followed by a post-annealing process is utilized to realize the surface coating of tantalum oxide on LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),and the electrochemical performance is improved.The modified Li Ni_(0.88)Mn_(0.03)Co_(0.09)O_(2)displays an initial discharge capacity of~233 m Ah/g at0.1 C and 174 m Ah/g at 1 C after 150 cycles in the voltage range of 3.0 V–4.4 V at 45℃,and it also exhibits an enhanced rate capability with 118 m Ah/g at 5 C.The excellent performance is due to the introduction of tantalum oxide as a stable and functional layer to protect the surface of LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),and the surface side reactions and cation mixing are suppressed at the same time without hampering the charge transfer kinetics.展开更多
One of the major hurdles of nickel-rich cathode materials for lithium-ion batteries is the low cycling stability,especially at high temperature and high voltage,originating from severe structural degradation,which mak...One of the major hurdles of nickel-rich cathode materials for lithium-ion batteries is the low cycling stability,especially at high temperature and high voltage,originating from severe structural degradation,which makes this class of cathode less practical.Herein,we compared the effect of single and dual ions on electrochemical performance of high nickel(LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),NMC)cathode material in different temperatures and voltage ranges.The addition of a few amounts of tantalum(0.2 wt%)and boron(0.05 wt%)lead to improved electrochemical performance.The co-modified Li Ni_(0.88)Mn_(0.03)Co_(0.09)O_(2)displays an initial discharge capacity of 234.9 m Ah/g at 0.1 C and retained 208 m Ah/g at 1 C after 100 cycles at 45℃,which corresponds to a capacity retention of 88.5%,compared to the initial discharge capacity of234.1 m Ah/g and retained capacity of 200.5 m Ah/g(85.6%).The enhanced capacity retention is attributed to the synergetic effect of foreign elements by acting as a surface structural stabilizer without sacrificing specific capacity.展开更多
基金Project supported by the Key Laboratory Fund(Grant No.6142804200303)from Science and Technology on Microsystem Laboratorythe Key Research Program of Frontier Sciences of the Chinese Academy of Sciences:Original Innovation Projects from 0 to 1(Grant No.ZDBS-LY-JSC010)+2 种基金the Key Research and Development Project of the Department of Science and Technology of Jiangsu Province,China(Grant No.BE2020003)the Beijing Municipal Science and Technology Commission(Grant No.Z191100004719001)the National Key Research and Development Program of China(Grant No.2017YFB0405400)。
文摘Nickel-rich cathode materials are increasingly being applied in commercial lithium-ion batteries to realize higher specific capacity as well as improved energy density.However,low structural stability and rapid capacity decay at high voltage and temperature hinder their rapid large-scale application.Herein,a wet chemical method followed by a post-annealing process is utilized to realize the surface coating of tantalum oxide on LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),and the electrochemical performance is improved.The modified Li Ni_(0.88)Mn_(0.03)Co_(0.09)O_(2)displays an initial discharge capacity of~233 m Ah/g at0.1 C and 174 m Ah/g at 1 C after 150 cycles in the voltage range of 3.0 V–4.4 V at 45℃,and it also exhibits an enhanced rate capability with 118 m Ah/g at 5 C.The excellent performance is due to the introduction of tantalum oxide as a stable and functional layer to protect the surface of LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),and the surface side reactions and cation mixing are suppressed at the same time without hampering the charge transfer kinetics.
基金the Key Laboratory Fund(Grant No.6142804200303)from Science and Technology on Microsystem Laboratorythe Key Research Program of Frontier Sciences of the Chinese Academy of Sciences:Original Innovation Projects from 0 to 1(Grant No.ZDBS-LY-JSC010)Beijing Municipal Science&Technology Commission(Grant No.Z191100004719001)。
文摘One of the major hurdles of nickel-rich cathode materials for lithium-ion batteries is the low cycling stability,especially at high temperature and high voltage,originating from severe structural degradation,which makes this class of cathode less practical.Herein,we compared the effect of single and dual ions on electrochemical performance of high nickel(LiNi_(0.88)Mn_(0.03)Co_(0.09)O_(2),NMC)cathode material in different temperatures and voltage ranges.The addition of a few amounts of tantalum(0.2 wt%)and boron(0.05 wt%)lead to improved electrochemical performance.The co-modified Li Ni_(0.88)Mn_(0.03)Co_(0.09)O_(2)displays an initial discharge capacity of 234.9 m Ah/g at 0.1 C and retained 208 m Ah/g at 1 C after 100 cycles at 45℃,which corresponds to a capacity retention of 88.5%,compared to the initial discharge capacity of234.1 m Ah/g and retained capacity of 200.5 m Ah/g(85.6%).The enhanced capacity retention is attributed to the synergetic effect of foreign elements by acting as a surface structural stabilizer without sacrificing specific capacity.