Today's production systems are demanded to exhibit an increased flexibility and mutability in order to deal with dynamically changing conditions, objectives and an increasing number of product variants within industr...Today's production systems are demanded to exhibit an increased flexibility and mutability in order to deal with dynamically changing conditions, objectives and an increasing number of product variants within industrial turbulent environments. Flexible automated systems are requested in order to improve dynamic production efficiency, e.g. robot-based hardware and PC-based controllers, but these usually induce a significantly higher production complexity, whereby the efforts for planning and programming, but also setups and reconfiguration, expand. In this paper a definition and some concepts of self-optimizing assembly systems are presented to describe possible ways to reduce the planning efforts in complex production systems. The concept of self-optimization in assembly systems will be derived from a theoretical approach and will be transferred to a specific application scenario---the automated assembly of a miniaturized solid state laser--where the challenges of unpredictable influences from e.g. component tolerances can be overcome by the help of self-optimization.展开更多
There are many welding fixture layout design problems of flexible parts inbody-in-white assembly process, which directly cause body assemble variation. The fixture layoutdesign quality is mainly influenced by the posi...There are many welding fixture layout design problems of flexible parts inbody-in-white assembly process, which directly cause body assemble variation. The fixture layoutdesign quality is mainly influenced by the position and quantity of fixture locators and clamps. Ageneral analysis model of flexible assembles deformation caused by fixture is set up based on'N-2-l' locating principle, in which the locator and damper are treated as the same fixture layoutelements. An analysis model for the flexible part deformation in fixturing is set up in order toobtain the optimization object function and constraints accordingly. The final fixture elementlayout could be obtained through global optimal research by using improved genetic algorithm, whicheffectively decreases fixture elements layout influence on flexible assembles deformation.展开更多
Aiming at the characteristics of obvious block division and strong discreteness in the assembly production mode of electronic products,this paper proposes a composite U-shaped flexible assembly line model,and establis...Aiming at the characteristics of obvious block division and strong discreteness in the assembly production mode of electronic products,this paper proposes a composite U-shaped flexible assembly line model,and establishes a multi-objective optimization mathematical model on this basis.According to the characteristics of the model,the improved ranked positional weight(RPW)method is used to adjust the generation process of the initial solution of the genetic algorithm,so that the genetic algorithm can be applied to the block task model.At the same time,the adaptive cross mutation factor is used on the premise that tasks between different blocks are not crossed during cross mutation,which effectively improves the probability of excellent individuals retaining.After that,the algorithm is used to iterate to obtain the optimal solution task assignment.Finally,the algorithm results are compared with actual production data,which verifies the validity and feasibility of the assembly line model for discrete production mode proposed in this paper.展开更多
To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,wh...To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.展开更多
An integrated approach to generation of precedence relations and precedencegraphs for assembly sequence planning is presented, which contains more assembly flexibility. Theapproach involves two stages. Based on the as...An integrated approach to generation of precedence relations and precedencegraphs for assembly sequence planning is presented, which contains more assembly flexibility. Theapproach involves two stages. Based on the assembly model, the components in the assembly can bedivided into partially constrained components and completely con-strained components in the firststage, and then geometric precedence relation for every component is generated automatically.According to the result of the first stage, the second stage determines and constructs allprecedence graphs. The algorithms of these two stages proposed are verified by two assemblyexamples.展开更多
As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an impor...As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed.展开更多
Worldwide competition and diverse demand of customers pose great challenges to manufacturing enterprises. How to organize production to achieve high productivity and low cost becomes their primary task. In the mean ti...Worldwide competition and diverse demand of customers pose great challenges to manufacturing enterprises. How to organize production to achieve high productivity and low cost becomes their primary task. In the mean time, the rapid pace of technology innovation has contributed to the development of new types of flexible automation. Hence, increasing manufacturing enterprises convert to multi-product and small-batch production, a manufacturing strategy that brings increased output, reduced costs, and quick response to the market. A distinctive feature of small-batch production is that the system operates mainly in the transient states. Transient states may have a significant impact on manufacturing systems. It is therefore necessary to estimate the dynamic performance of systems. As the assembly system is a typical class of production systems, in this paper, we focus on the problem of dynamic performance prediction of the assembly systems that produce small batches of different types of products. And the system is assumed to be characterized with Bernoulli reliability machines, finite buffers, and changeovers. A mathematical model based on Markovian analysis is first derived and then, the analytical formulas for performance evaluation of three-machine assembly systems are given. Moreover, a novel approach based on decomposition and aggregation is proposed to predict dynamic performance of large-scale assembly systems that consist of multiple component lines and additional processing machines located downstream of the assemble machine. The proposed approach is validated to be highly accurate and computationally efficient when compared to Monte Carlo simulation.展开更多
文摘Today's production systems are demanded to exhibit an increased flexibility and mutability in order to deal with dynamically changing conditions, objectives and an increasing number of product variants within industrial turbulent environments. Flexible automated systems are requested in order to improve dynamic production efficiency, e.g. robot-based hardware and PC-based controllers, but these usually induce a significantly higher production complexity, whereby the efforts for planning and programming, but also setups and reconfiguration, expand. In this paper a definition and some concepts of self-optimizing assembly systems are presented to describe possible ways to reduce the planning efforts in complex production systems. The concept of self-optimization in assembly systems will be derived from a theoretical approach and will be transferred to a specific application scenario---the automated assembly of a miniaturized solid state laser--where the challenges of unpredictable influences from e.g. component tolerances can be overcome by the help of self-optimization.
基金This project is supported by National 863 Plan (No.2001AA411140)National Natural Science Foundation of China (No.50175071).
文摘There are many welding fixture layout design problems of flexible parts inbody-in-white assembly process, which directly cause body assemble variation. The fixture layoutdesign quality is mainly influenced by the position and quantity of fixture locators and clamps. Ageneral analysis model of flexible assembles deformation caused by fixture is set up based on'N-2-l' locating principle, in which the locator and damper are treated as the same fixture layoutelements. An analysis model for the flexible part deformation in fixturing is set up in order toobtain the optimization object function and constraints accordingly. The final fixture elementlayout could be obtained through global optimal research by using improved genetic algorithm, whicheffectively decreases fixture elements layout influence on flexible assembles deformation.
文摘Aiming at the characteristics of obvious block division and strong discreteness in the assembly production mode of electronic products,this paper proposes a composite U-shaped flexible assembly line model,and establishes a multi-objective optimization mathematical model on this basis.According to the characteristics of the model,the improved ranked positional weight(RPW)method is used to adjust the generation process of the initial solution of the genetic algorithm,so that the genetic algorithm can be applied to the block task model.At the same time,the adaptive cross mutation factor is used on the premise that tasks between different blocks are not crossed during cross mutation,which effectively improves the probability of excellent individuals retaining.After that,the algorithm is used to iterate to obtain the optimal solution task assignment.Finally,the algorithm results are compared with actual production data,which verifies the validity and feasibility of the assembly line model for discrete production mode proposed in this paper.
基金Supported by the National Natural Science Foundation of China(No.11672290)
文摘To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.
基金This project is supported by National Natural Science Foundation of China(No.59990470,No.59725514,No.59985004)and Robotics Laboratory,Chinese Academy of Sciences Foundation(No.RL200006)
文摘An integrated approach to generation of precedence relations and precedencegraphs for assembly sequence planning is presented, which contains more assembly flexibility. Theapproach involves two stages. Based on the assembly model, the components in the assembly can bedivided into partially constrained components and completely con-strained components in the firststage, and then geometric precedence relation for every component is generated automatically.According to the result of the first stage, the second stage determines and constructs allprecedence graphs. The algorithms of these two stages proposed are verified by two assemblyexamples.
基金supported by the National Natural Science Foundation of China (10732050)Tsinghua University (2009THZ02122)the National Basic Research Program of China (973) (2010CB631005)
文摘As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed.
基金This work was supported in part by the National Key R&D Program of China(No.2021YFB1714800)the National Natural Science Foundation of China(No.62103042)the Beijing Municipal Natural Science Foundation(No.4214076).
文摘Worldwide competition and diverse demand of customers pose great challenges to manufacturing enterprises. How to organize production to achieve high productivity and low cost becomes their primary task. In the mean time, the rapid pace of technology innovation has contributed to the development of new types of flexible automation. Hence, increasing manufacturing enterprises convert to multi-product and small-batch production, a manufacturing strategy that brings increased output, reduced costs, and quick response to the market. A distinctive feature of small-batch production is that the system operates mainly in the transient states. Transient states may have a significant impact on manufacturing systems. It is therefore necessary to estimate the dynamic performance of systems. As the assembly system is a typical class of production systems, in this paper, we focus on the problem of dynamic performance prediction of the assembly systems that produce small batches of different types of products. And the system is assumed to be characterized with Bernoulli reliability machines, finite buffers, and changeovers. A mathematical model based on Markovian analysis is first derived and then, the analytical formulas for performance evaluation of three-machine assembly systems are given. Moreover, a novel approach based on decomposition and aggregation is proposed to predict dynamic performance of large-scale assembly systems that consist of multiple component lines and additional processing machines located downstream of the assemble machine. The proposed approach is validated to be highly accurate and computationally efficient when compared to Monte Carlo simulation.