This paper presents a stochastic optimal operation problem of gas turbine integrated distribution networks in the presence of active management schemes,which is formulated as a multi-objective chance-constrained mixed...This paper presents a stochastic optimal operation problem of gas turbine integrated distribution networks in the presence of active management schemes,which is formulated as a multi-objective chance-constrained mixed integer nonlinear programming problem.The control variables are the on-load tap-changer tap position,the power provided by the distributed generation(DG),the DG power factor angle,the load participating in demand side management and the switch status.The objectives defined in this paper are to simultaneously minimize the expectation cost and variation coefficient of security distance.Uncertainties related to DG output and load fluctuation and fault power restoration under contingencies are also considered in the optimization problem.The collaboration of normal boundary intersection and the dynamic niche differential evolution algorithm is proposed to handle the optimal operation mode.Simulation results are presented and demonstrate the effectiveness of the proposed model.Compared with the operation result without the consideration of security,the security-constrained operation can reduce the expectation cost.Therefore,the proposed optimization is reasonable and valuable.展开更多
As the structures of multiple branch lines(MBLs)will be widely applied in the future flexible DC distribution network,there is a urgent need for improving system reliability by tackling the frequent non-permanent pole...As the structures of multiple branch lines(MBLs)will be widely applied in the future flexible DC distribution network,there is a urgent need for improving system reliability by tackling the frequent non-permanent pole-to-pole(P-P)fault on distribution lines.A novel fault restoration strategy based on local information is proposed to solve this issue.The strategy firstly splits a double-ended power supply network into two single-ended power supply networks through the timing difference characteristics of a hybrid direct current circuit breaker(HDCCB)entering the recloser.Then,a method based on the characteristic of the transient energy of fault current is proposed to screen the faulty branch line in each single-ended power supply network.Also,a four-terminal flexible DC distribution network with MBLs is constructed on PSCAD to demonstrate the efficacy of the proposed strategy.Various factors such as noise,fault location,and DC arc equivalent resistance are considered in the simulation model for testing.Test results prove that the proposed strategy for fault restoration is effective,and features high performance and scalability.展开更多
基金supported in part by the National Key R&D Program of China under Grant 2018YFE0208400the Zhejiang Provincial Natural Science Foundation of China under Grant LQ21E070003the 2022 Open Foundation of National Key Laboratory“Coordinated Operation and Autonomous Planning of New Power Transmission and Distribution Systems Considering Source-NetworkLoad Uncertainties”.
文摘This paper presents a stochastic optimal operation problem of gas turbine integrated distribution networks in the presence of active management schemes,which is formulated as a multi-objective chance-constrained mixed integer nonlinear programming problem.The control variables are the on-load tap-changer tap position,the power provided by the distributed generation(DG),the DG power factor angle,the load participating in demand side management and the switch status.The objectives defined in this paper are to simultaneously minimize the expectation cost and variation coefficient of security distance.Uncertainties related to DG output and load fluctuation and fault power restoration under contingencies are also considered in the optimization problem.The collaboration of normal boundary intersection and the dynamic niche differential evolution algorithm is proposed to handle the optimal operation mode.Simulation results are presented and demonstrate the effectiveness of the proposed model.Compared with the operation result without the consideration of security,the security-constrained operation can reduce the expectation cost.Therefore,the proposed optimization is reasonable and valuable.
基金supported by the National Natural Science Foundation of China(No.51877174)。
文摘As the structures of multiple branch lines(MBLs)will be widely applied in the future flexible DC distribution network,there is a urgent need for improving system reliability by tackling the frequent non-permanent pole-to-pole(P-P)fault on distribution lines.A novel fault restoration strategy based on local information is proposed to solve this issue.The strategy firstly splits a double-ended power supply network into two single-ended power supply networks through the timing difference characteristics of a hybrid direct current circuit breaker(HDCCB)entering the recloser.Then,a method based on the characteristic of the transient energy of fault current is proposed to screen the faulty branch line in each single-ended power supply network.Also,a four-terminal flexible DC distribution network with MBLs is constructed on PSCAD to demonstrate the efficacy of the proposed strategy.Various factors such as noise,fault location,and DC arc equivalent resistance are considered in the simulation model for testing.Test results prove that the proposed strategy for fault restoration is effective,and features high performance and scalability.