In the research of 2D flexible tactile sensor matrix,pressure-sensitive conductive rubber was developed and tested in which carbon black was used as its conductive phase and silicon rubber as its matrix layer.Experime...In the research of 2D flexible tactile sensor matrix,pressure-sensitive conductive rubber was developed and tested in which carbon black was used as its conductive phase and silicon rubber as its matrix layer.Experiments were undertaken and the resultant data were used for its piezoresistive characteristics investigation for two kinds of electrode connection configurations,the surface directive connection and embedded connection.It is found that due to the rather strong nonlinearity of the piezoresistive characteristic curves obtained,a higher correlation relationship can be obtained by means of quadratic polynomial fitting.It also showed that the embedded electrode assembling has higher fitting accuracy while the surface directive connection has better mechanical sensitivity.展开更多
A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle(FAHV).By utilizing functional decomposition method, the dynamics of FAHV is ...A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle(FAHV).By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem.For each subsystem, only one neural network is employed for the unknown function approximation.To further reduce the computational burden, minimal-learning parameter(MLP)technology is used to estimate the norm of ideal weight vectors rather than their elements.By introducing sliding mode differentiator(SMD) to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller.Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme.Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.展开更多
The self-propulsion of a 3-D flapping flexible plate in a stationary fluid is numerically studied by an immersed boundarylattice Boltzmann method for the fluid flow and a finite element method for the plate motion. Wh...The self-propulsion of a 3-D flapping flexible plate in a stationary fluid is numerically studied by an immersed boundarylattice Boltzmann method for the fluid flow and a finite element method for the plate motion. When the leading-edge of the plate is forced to heave sinusoidally, the entire plate starts to move freely as a result of the fluid-structure interaction. Based on our simulation and analysis on the dynamical behaviors of the flapping flexible plate, we have found that the effect of plate aspect ratio on its propulsive properties can be divided into three typical regimes which are related to the plate flexibility, i.e. stiff, medium flexible, and more flexible regime. It is also identified that a suitable structure flexibility, corresponding to the medium flexible regime, can improve the propulsive speed and efficiency. The wake behind the flapping plate is investigated for several aspect ratios to demonstrate some typical vortical structures. The results obtained in this study can provide some physical insights into the understanding of the propulsive mechanisms in the flapping-based locomotion.展开更多
Propulsive performance of a passively flapping plate in a uniform viscous flow has been studied numerically by means of a multiblock lattice Boltzmann method. The passively flapping plate is modeled by a rigid plate w...Propulsive performance of a passively flapping plate in a uniform viscous flow has been studied numerically by means of a multiblock lattice Boltzmann method. The passively flapping plate is modeled by a rigid plate with a torsion spring acting about the pivot at the leading-edge of the plate, which is called a lumped-torsional-flexibility model. When the leading-edge is forced to take a vertical oscillation, the plate pitches passively due to the fluid-plate interaction. Based on our numerical simulations, various fundamental mechanisms dictating the propulsive performance, including the forces on the plate, power consumption, propulsive efficiency and vortical structures, have been studied. It is found that the torsional flexibility of the passively pitching plate can improve the propulsive performance. The results obtained in this study provide some physical insights into the understanding of the propulsive behaviors of swimming and flying animals.展开更多
基金Funded by the National Natural Science Foundation of China(No.60672024)National High Technology Research and Development Program of China (No.2007AA04Z220)
文摘In the research of 2D flexible tactile sensor matrix,pressure-sensitive conductive rubber was developed and tested in which carbon black was used as its conductive phase and silicon rubber as its matrix layer.Experiments were undertaken and the resultant data were used for its piezoresistive characteristics investigation for two kinds of electrode connection configurations,the surface directive connection and embedded connection.It is found that due to the rather strong nonlinearity of the piezoresistive characteristic curves obtained,a higher correlation relationship can be obtained by means of quadratic polynomial fitting.It also showed that the embedded electrode assembling has higher fitting accuracy while the surface directive connection has better mechanical sensitivity.
基金supported by the Aeronautical Science Foundation of China (No.20130196004)
文摘A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle(FAHV).By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem.For each subsystem, only one neural network is employed for the unknown function approximation.To further reduce the computational burden, minimal-learning parameter(MLP)technology is used to estimate the norm of ideal weight vectors rather than their elements.By introducing sliding mode differentiator(SMD) to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller.Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme.Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.
基金supported by the National Natural Science Foun-dation of China(Grant No.11372304)the 111 Project(Grant No.B07033)
文摘The self-propulsion of a 3-D flapping flexible plate in a stationary fluid is numerically studied by an immersed boundarylattice Boltzmann method for the fluid flow and a finite element method for the plate motion. When the leading-edge of the plate is forced to heave sinusoidally, the entire plate starts to move freely as a result of the fluid-structure interaction. Based on our simulation and analysis on the dynamical behaviors of the flapping flexible plate, we have found that the effect of plate aspect ratio on its propulsive properties can be divided into three typical regimes which are related to the plate flexibility, i.e. stiff, medium flexible, and more flexible regime. It is also identified that a suitable structure flexibility, corresponding to the medium flexible regime, can improve the propulsive speed and efficiency. The wake behind the flapping plate is investigated for several aspect ratios to demonstrate some typical vortical structures. The results obtained in this study can provide some physical insights into the understanding of the propulsive mechanisms in the flapping-based locomotion.
基金Project supported by the Natural Science Foundation of China(Grant No.11372304)the 111 Project(Grant No.B07033)
文摘Propulsive performance of a passively flapping plate in a uniform viscous flow has been studied numerically by means of a multiblock lattice Boltzmann method. The passively flapping plate is modeled by a rigid plate with a torsion spring acting about the pivot at the leading-edge of the plate, which is called a lumped-torsional-flexibility model. When the leading-edge is forced to take a vertical oscillation, the plate pitches passively due to the fluid-plate interaction. Based on our numerical simulations, various fundamental mechanisms dictating the propulsive performance, including the forces on the plate, power consumption, propulsive efficiency and vortical structures, have been studied. It is found that the torsional flexibility of the passively pitching plate can improve the propulsive performance. The results obtained in this study provide some physical insights into the understanding of the propulsive behaviors of swimming and flying animals.