期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Dynamic surface control-backstepping based impedance control for 5-DOF flexible joint robots 被引量:5
1
作者 熊根良 谢宗武 +3 位作者 黄剑斌 刘宏 蒋再男 孙奎 《Journal of Central South University》 SCIE EI CAS 2010年第4期807-815,共9页
A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Compar... A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically. 展开更多
关键词 Cartesian impedance control dynamic surface control BACKSTEPPING PPSeCo flexible joint robots
下载PDF
Robust dynamic surface control of flexible joint robots using recurrent neural networks 被引量:4
2
作者 Zhiqiang MIAO Yaonan WANG 《控制理论与应用(英文版)》 EI CSCD 2013年第2期222-229,共8页
A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique int... A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique into the dy- namic surface control framework. Two recurrent neural networks are used to adaptively learn the uncertain functions in a flexible joint robot. Then, the effects of approximation error and filter error on the tracking performance are attenuated to a prescribed level by the embedded H-infinity controller, so that the desired H-infinity tracking performance can be achieved. Finally. simulation results verifv the effectiveness of the nronosed control scheme. 展开更多
关键词 Dynamic surface control flexible joint robots Robust H-infinity control Recurrent neural network
原文传递
Unified Vibration Suppression and Compliance Control for Flexible Joint Robot 被引量:3
3
作者 CUI Shipeng SUN Yongjun +1 位作者 LIU Yiwei LIU Hong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第3期361-372,共12页
An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both v... An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both vibration suppression mode,where FJR tracks the desired position with little vibration,and compliance mode,in which FJR presents passive.Instead of designing multiple controllers and switching between them,both modes are integrated into a single controller,and the transition between two modes is smooth and stable.The stability of the closed-loop system is theoretically proven via the Lyapunov method,with the considering the dynamics uncertainties in both link side and motor side.Simulation results are presented to illustrate good performances of the proposed control scheme. 展开更多
关键词 adaptive control scheme vibration suppression COMPLIANCE flexible joint robot(FJR) STABILITY
下载PDF
Design of Robust Controller for Flexible Joint Robot with Nonlinear Friction Characteristics 被引量:1
4
作者 陈健 葛连正 李瑞峰 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期737-742,共6页
A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal m... A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance. 展开更多
关键词 robot joints with flexibility nonlinear friction describing function method robust control
下载PDF
A New Adaptive Tracking Control Approach for Uncertain Flexible Joint Robot System
5
作者 Zhen-Guo Liu Jin-Ming Huang 《International Journal of Automation and computing》 EI CSCD 2015年第5期559-566,共8页
The adaptive tracking problem for uncertain flexible joint robot system is studied in this paper. By utilizing the adaptive backstepping method, an adaptive controller is constructed at the beginning. By utilizing the... The adaptive tracking problem for uncertain flexible joint robot system is studied in this paper. By utilizing the adaptive backstepping method, an adaptive controller is constructed at the beginning. By utilizing the modified adaptive dynamic surface control technique, a new adaptive controller is presented afterwards to avoid the overparametrization problem and the explosion of complexity problem existing in the adaptive backstepping method. All the signals of the closed-loop system are rendered globally/semi-globally uniformly ultimately bounded, and the tracking error can be made arbitrarily small by tuning the designed parameters. A simulation example is given to show the validity of the control algorithm. 展开更多
关键词 flexible joint robots adaptive control backsteppin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部