Bimetal catalysts are good alternatives for nonenzymatic glucose sensors owing to their low cost, high activity, good conductivity, and ease of fabrication. In the present study, a self-supported CuNi/C electrode prep...Bimetal catalysts are good alternatives for nonenzymatic glucose sensors owing to their low cost, high activity, good conductivity, and ease of fabrication. In the present study, a self-supported CuNi/C electrode prepared by electrodepositing Cu nanoparticles on a Ni-based metal–organic framework(MOF) derivate was used as a non-enzymatic glucose sensor. The porous construction and carbon scaffold inherited from the Ni-MOF guarantee good kinetics of the electrode process in electrochemical glucose detection. Furthermore, Cu nanoparticles disturb the array structure of MOF derived films and evidently enhance their electrochemical performances in glucose detection. Electrochemical measurements indicate that the CuNi/C electrode possesses a high sensitivity of17.12 mA mM^(-1) cm^(-2), a low detection limit of 66.67 nM,and a wider linearity range from 0.20 to 2.72 mM. Additionally, the electrode exhibits good reusability, reproducibility, and stability, thereby catering to the practical use of glucose sensors. Similar values of glucose concentrations in human blood serum samples are detected with our electrode and with the method involving glucose-6-phosphate dehydrogenase; the results further demonstrate the practical feasibility of our electrode.展开更多
Cu nanoclusters were electrochemically deposited on the film of a Nafion-solubilized multi-wall carbon nanotubes (CNTs) modified glassy carbon electrode (CNTs-GCE), which fabricated a Cu-CNTs composite sensor (Cu-CNTs...Cu nanoclusters were electrochemically deposited on the film of a Nafion-solubilized multi-wall carbon nanotubes (CNTs) modified glassy carbon electrode (CNTs-GCE), which fabricated a Cu-CNTs composite sensor (Cu-CNTs-GCE) to detect glucose with non-enzyme. The linear range is 7.0 × 10?7 to 3.5 × 10?3 mol/L with a high sensitivity of 17.76 μA/(mmol L), with a low detection limit 2.1 × 10?7 mol/L, fast response time (within 5 s), good reproducibility and stability.展开更多
A novel electrochemical non-enzymatic glucose sensor based on three-dimensional Au/MXene nanocomposites was developed.MXenes were prepared using the mild etched method,and the porous foam of Au nanoparticles was combi...A novel electrochemical non-enzymatic glucose sensor based on three-dimensional Au/MXene nanocomposites was developed.MXenes were prepared using the mild etched method,and the porous foam of Au nanoparticles was combined with the MXene by means of in situ synthesis.By controlling the mass of MXene in the synthesis process,porous foam with Au nanoparticles was obtained.The three-dimensional foam structure of nanoparticles was confirmed by scanning electron microscopy.Cyclic voltammetry and electrochemical impedance spectroscopy were used to study the electrochemical performance of the Au/MXene nanocomposites.The Au/MXene nanocomposites acted as a fast redox probe for nonenzymatic glucose oxidation and showed good performance,including a high sensitivity of 22.45μA·(mmol/L)^(-1)·cm^(-1)and a wide linear range of 1-12 mmol/L.Studies have shown that MXene as a catalyst-supported material is beneficial to enhance the conductivity of electrons and increase the loading rate of the catalyst materials.The foam structure with Au nanoparticles can provide a larger surface area,increase the contact area with the molecule in the catalytic reaction,and enhance the electrochemical reaction signal.In summary,this study shows that Au/MXene nanoparticles have the potential to be used in non-enzymatic glucose sensors.展开更多
In this study, novel nickel oxide (NiO) flowers like nanostructures were fabricated onto gold coated glass substrate by hydrothermal method using high alkaline pH medium. The structural study of nickel oxide nanostruc...In this study, novel nickel oxide (NiO) flowers like nanostructures were fabricated onto gold coated glass substrate by hydrothermal method using high alkaline pH medium. The structural study of nickel oxide nanostructures was performed by scanning electron microscopy (SEM) and X-ray differaction (XRD) techniques. Nickel oxide nanostructures are highly dense, uniform and possess good crystalline quality. The so prepared structures were investigated for their electrochemical properties by cyclic voltammetry and amperometric techniques. The nickel oxide flower like morphology has shown good electrochemical performances for the oxidation of glucose. The presented sensing material was able to detected glucose in a wide range of concentration of 0.001 mM to 8 mM with a high sensitivity (123 μmA/mM) and regression coefficient of 0.99. Moreover, the NiO nanostructures based sensor is highly reproducible, stable, exhibiting a fast response time and selective in the response. All the obtained results indicate the potential use of this material in the development of enzyme free sensors for the detection of glucose.展开更多
The highly-dispersed iron element decorated Ni foam was prepared by simple immersion in a ferric nitrate solution at room temperature without using acid etching, and characterized by X-ray powder diffraction(XRD), sca...The highly-dispersed iron element decorated Ni foam was prepared by simple immersion in a ferric nitrate solution at room temperature without using acid etching, and characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), EDAX spectrum(EDAX mapping) and Raman spectroscopy. The EDAX spectrum illustrated that iron element was highly-dispersed over the entire surface of nickel foam, and the Raman spectroscopy revealed that both Ni-O and Fe-O bonds were formed on the surface of the as-prepared electrode. Moreover, the iron element decorated Ni foam electrode can be used as non-enzymatic glucose sensor and it exhibits not only an ultra-wide linear concentration range of 1-18 mmol/L with an outstanding sensitivity of 1.0388 m A·mmol/(L·cm2), but also an excellent ability of stability and selectivity. Therefore, this work presents a simple yet effective approach to successfully modify Ni foam as non-enzymatic glucose sensor.展开更多
In this study,the application of bovine serum albumin(BSA)as a carrier to glucose-sensitive materials for the detection of glucose was proposed.Au-Cu O bimetallic nanoclusters(Au-Cu O/BSA)were prepared using BSA as a ...In this study,the application of bovine serum albumin(BSA)as a carrier to glucose-sensitive materials for the detection of glucose was proposed.Au-Cu O bimetallic nanoclusters(Au-Cu O/BSA)were prepared using BSA as a template,the new sensing material(Au-Cu O/BSA/MWCNTs)was synthesized by mixing with multi-walled carbon nanotubes(MWCNT)and applied to non-enzymatic electrochemical sensors to detect glucose stably and effectively under neutral condition.The scanning electron microscopy was used to investigate the morphology of the synthesized nanocomposite.The electrochemical properties of the sensor were studied by cyclic voltammetry.Glucose detection experiments show that Au-Cu O/BSA/MWCNTs/Au electrode has good glucose detection ability,stability,accuracy,repeatability,and high selectivity in neutral environment.Unlike existing glucose-sensitive materials,due to the use of BSA,the composite material is firmly fixed to the electrode surface without a Nafion solution,which reduces the current blocking effect on the modified electrode.The composite materials can be effectively preserved for extremely long periods,higher than 80%activity is maintained at room temperature in a closed environment for 3 to 4 months,due to the special effects of BSA.In addition,the feasibility of using BSA in glucose-sensitive materials is confirmed.展开更多
In the field of glucose sensors,the development of inexpensive and high-efficiency electrochemical glucose sensors is the current research hotspot.In this paper,CuO-Co_(3)O_(4)composite with a prickly-sphere-like morp...In the field of glucose sensors,the development of inexpensive and high-efficiency electrochemical glucose sensors is the current research hotspot.In this paper,CuO-Co_(3)O_(4)composite with a prickly-sphere-like morphology is prepared by the facile hydrothermal method for the non-enzymatic electrochemical glucose detection.X-ray diffraction,scanning electron microscopy,transmission electron microscopy,energy-dispersive X-ray spec-troscopy,and X-ray photoelectron spectroscopy are used to analyze the structure,composition,and morphology of the material.In addition,the electrochemical catalytic perfor-mance of CuO-Co_(3)O_(4)to glucose is obtained by cyclic voltammetry and chronoamperometry.The excellent elec-trochemical sensing performance may be attributed to the large number of catalytic sites in the prickly-sphere-like composite and the synergistic effect of Cu and Co.Under an applied voltage of 0.55 V,CuO-Co_(3)O_(4)composite shows sensitivity to glucose(1503.45μA·(mmol·L^(-1))^(-1)-cm^(-2)),a low detection limit(21.95μmol·L^(-1)),excellent selectivity,a high level of reproducibility,and good sta-bility.This indicates that the CuO-Co_(3)O_(4)composite has a broad prospect of non-enzymatic glucose sensing application.展开更多
Nanocomposite of Co3O4 and multiwalled carbon nanotube (MCNT) was synthesised using one step solvothermal method, and an electrochemical non-enzymatic glucose sensor (Co3O4-MCNT/GCE) was successfully constructed by a ...Nanocomposite of Co3O4 and multiwalled carbon nanotube (MCNT) was synthesised using one step solvothermal method, and an electrochemical non-enzymatic glucose sensor (Co3O4-MCNT/GCE) was successfully constructed by a dropping method. The obtained Co3O4 and Co3O4- MCNT were characterized and investigated by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Quantitative analysis of glucose was performed using the amperometric (i–t) method, and plot of current difference versus concentration of glucose was linear in the range of 1.0–122μmol/L, with a linear correlation coefficient (R^2) of 0.9983 and limit of detection (LOD) of 0.28μmol/L. Sensitivity of this sensor was evaluated as 2550μA L mmol^-1 cm^-2. This new sensor produced satisfactory reproducibility and stability and was applied to monitor trace amounts of glucose in human serum samples.展开更多
The preparation of highly sensitive and stable non-enzymatic glucose sensors is critical to the prevention and treatment of diabetes.Fe_(3)O_(4)@Au@Co Fe-LDH is prepared through a spontaneous galvanic displacement rea...The preparation of highly sensitive and stable non-enzymatic glucose sensors is critical to the prevention and treatment of diabetes.Fe_(3)O_(4)@Au@Co Fe-LDH is prepared through a spontaneous galvanic displacement reaction.A series of structural characterizations testify the successful formation of Fe_(3)O_(4)@Au@Co FeLDH electrocatalyst,with the Au intercalating between Fe_(3)O_(4)and LDH to form the sandwich structure.Cyclic voltammetry tests indicate that Au is responsible for the electrocatalytic oxidation of glucose.The characterizations of the electrochemical sensor for glucose detection indicate that Fe_(3)O_(4)@Au@Co FeLDH possesses high sensitivity of 6342μA m M^(-1)cm^(-2),with an extremely low oxidation potential of 0.82 V vs.RHE.Even with the high glucose concentration of 15 m M,the sensitivity remains at 4359μA m M^(-1)cm^(-2).Due to the broad linear detection range(0.0375 to 15.64 m M)and the low limit of detection(12.7μM),Fe_(3)O_(4)@Au@Co Fe-LDH is applicable towards practical application.Thanks to the sandwich structure,which confines the Au in between Fe_(3)O_(4)and Co Fe-LDH,the Fe_(3)O_(4)@Au@Co Fe-LDH glucose sensor shows high long-term stability and satisfactory selectivity.The successful synthesis of the sandwichstructured Fe_(3)O_(4)@Au@Co Fe-LDH provides a new conception for the design of highly sensitive and stable non-enzymatic glucose electrodes.展开更多
Mass detection of glucose,which is required in many applications,remains challenging.The commercial enzyme-based glucose test strips cannot be reused,and current non-enzymatic glucose sensors exhibit a narrow range of...Mass detection of glucose,which is required in many applications,remains challenging.The commercial enzyme-based glucose test strips cannot be reused,and current non-enzymatic glucose sensors exhibit a narrow range of detection and slow glucose oxidation kinetics.Herein,controlled etching of Prussian blue analogue(PBA)nanocubes at the vertices is conducted and Au nanoparticles(Au NPs)are subsequently inlaid in the etched cavities by in-situ reduction of HAuCl4.The unique AuNP-PBA nanocomplexes exhibit low electrochemical potential for glucose oxidation,high electrocatalytic activity,and rapid redox electron transfer rate.Covalent immobilization of the Au-inlaid nanomaterials on a fine Au wire leads to a non-enzymatic glucose sensor with a particularly wide linear detection range(10μM to 16 mM),excellent anti-interference,and fast response.More importantly,the sensor is reusable,and its sensitivity is well maintained even after 150 times of detection.This new-concept material promises to enable high-throughput glucose detection at a low cost,which is essential in diabetic management and other healthcare applications.展开更多
Diabetes is a chronic metabolic disease that has effect on blood sugar level and affects millions of people.We present an integrated flexible and reusable graphene-based field effect transistor(GFET)nanosensor for the...Diabetes is a chronic metabolic disease that has effect on blood sugar level and affects millions of people.We present an integrated flexible and reusable graphene-based field effect transistor(GFET)nanosensor for the detection of glucose using pyrene-1-boronic acid(PBA)as the receptor.The nanosensor fabricated on the polyimide performs GFET-based rapid transduction of the glucose-PBA binding,thereby potentially allowing the detection of glucose that are sampled reliably from human bodily fluids(e.g.,sweat)in wearable sensing applications.Due to the reversible binding interaction between PBA and glucose,reusability of our nanosensor can be realized by exposing graphene surface to acidic solution.In characterizing the stability and reusability of the nanosensor for wearable applications,we investigated the effects of substrate bending,multiple reuse and long-time storage on the equilibrium dissociation constant between the PBA and glucose.Results show that bending,multiple reuse(over 10 times)and long-time storage has negligible effect on the sensing performance.The detection of glucose with a limit of detection(LOD)of 0.15 μM and a dynamic range of 0.05-100 μM,which covers the reference scope of physical examination or screening of diabetes.Hence,our flexible GFET nanosensor is promising for wearable and reusable biosensing applications.展开更多
The metabolic disorder of glucose in human body will cause diseases such as diabetes and hyperglycemia.Hence the determination of glucose content is very important in clinic diagnosing.In recent years,researchers have...The metabolic disorder of glucose in human body will cause diseases such as diabetes and hyperglycemia.Hence the determination of glucose content is very important in clinic diagnosing.In recent years,researchers have proposed various non-invasive wearable sensors for rapid and real-time glucose monitoring from human body fluids.Unlike those reviews which discussed performances,detection environments or substrates of the wearable glucose sensor,this review focuses on the sensing nanomaterials since they are the key elements of most wearable glucose sensors.The sensing nanomaterials such as carbon,metals,and conductive polymers are summarized in detail.And also the structural characteristics of different sensing nanomaterials and the corresponding wearable glucose sensors are highlighted.Finally,we prospect the future development requirements of sensing nanomaterials for wearable glucose sensors.This review would give some insights to the further development of wearable glucose sensors and the modern medical treatment.展开更多
基金supported by the National Natural Science Foundation of China (No. 21776052)the Natural Science Foundation of Heilongjiang Province (No. QC2016010)the Fundamental Research Funds for the Central Universities (No. HIT. IBRSEM. A. 201407)
文摘Bimetal catalysts are good alternatives for nonenzymatic glucose sensors owing to their low cost, high activity, good conductivity, and ease of fabrication. In the present study, a self-supported CuNi/C electrode prepared by electrodepositing Cu nanoparticles on a Ni-based metal–organic framework(MOF) derivate was used as a non-enzymatic glucose sensor. The porous construction and carbon scaffold inherited from the Ni-MOF guarantee good kinetics of the electrode process in electrochemical glucose detection. Furthermore, Cu nanoparticles disturb the array structure of MOF derived films and evidently enhance their electrochemical performances in glucose detection. Electrochemical measurements indicate that the CuNi/C electrode possesses a high sensitivity of17.12 mA mM^(-1) cm^(-2), a low detection limit of 66.67 nM,and a wider linearity range from 0.20 to 2.72 mM. Additionally, the electrode exhibits good reusability, reproducibility, and stability, thereby catering to the practical use of glucose sensors. Similar values of glucose concentrations in human blood serum samples are detected with our electrode and with the method involving glucose-6-phosphate dehydrogenase; the results further demonstrate the practical feasibility of our electrode.
文摘Cu nanoclusters were electrochemically deposited on the film of a Nafion-solubilized multi-wall carbon nanotubes (CNTs) modified glassy carbon electrode (CNTs-GCE), which fabricated a Cu-CNTs composite sensor (Cu-CNTs-GCE) to detect glucose with non-enzyme. The linear range is 7.0 × 10?7 to 3.5 × 10?3 mol/L with a high sensitivity of 17.76 μA/(mmol L), with a low detection limit 2.1 × 10?7 mol/L, fast response time (within 5 s), good reproducibility and stability.
基金supported by the National Natural Science Foundation of China(No.61704035)the Natural Science Foundation of Guangxi Province(2017GXNSFBA198125)Scientific Research and Technology Development Program of Guangxi(AD19110076,AD19110063)。
文摘A novel electrochemical non-enzymatic glucose sensor based on three-dimensional Au/MXene nanocomposites was developed.MXenes were prepared using the mild etched method,and the porous foam of Au nanoparticles was combined with the MXene by means of in situ synthesis.By controlling the mass of MXene in the synthesis process,porous foam with Au nanoparticles was obtained.The three-dimensional foam structure of nanoparticles was confirmed by scanning electron microscopy.Cyclic voltammetry and electrochemical impedance spectroscopy were used to study the electrochemical performance of the Au/MXene nanocomposites.The Au/MXene nanocomposites acted as a fast redox probe for nonenzymatic glucose oxidation and showed good performance,including a high sensitivity of 22.45μA·(mmol/L)^(-1)·cm^(-1)and a wide linear range of 1-12 mmol/L.Studies have shown that MXene as a catalyst-supported material is beneficial to enhance the conductivity of electrons and increase the loading rate of the catalyst materials.The foam structure with Au nanoparticles can provide a larger surface area,increase the contact area with the molecule in the catalytic reaction,and enhance the electrochemical reaction signal.In summary,this study shows that Au/MXene nanoparticles have the potential to be used in non-enzymatic glucose sensors.
文摘In this study, novel nickel oxide (NiO) flowers like nanostructures were fabricated onto gold coated glass substrate by hydrothermal method using high alkaline pH medium. The structural study of nickel oxide nanostructures was performed by scanning electron microscopy (SEM) and X-ray differaction (XRD) techniques. Nickel oxide nanostructures are highly dense, uniform and possess good crystalline quality. The so prepared structures were investigated for their electrochemical properties by cyclic voltammetry and amperometric techniques. The nickel oxide flower like morphology has shown good electrochemical performances for the oxidation of glucose. The presented sensing material was able to detected glucose in a wide range of concentration of 0.001 mM to 8 mM with a high sensitivity (123 μmA/mM) and regression coefficient of 0.99. Moreover, the NiO nanostructures based sensor is highly reproducible, stable, exhibiting a fast response time and selective in the response. All the obtained results indicate the potential use of this material in the development of enzyme free sensors for the detection of glucose.
基金Project(2019zzts684)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The highly-dispersed iron element decorated Ni foam was prepared by simple immersion in a ferric nitrate solution at room temperature without using acid etching, and characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), EDAX spectrum(EDAX mapping) and Raman spectroscopy. The EDAX spectrum illustrated that iron element was highly-dispersed over the entire surface of nickel foam, and the Raman spectroscopy revealed that both Ni-O and Fe-O bonds were formed on the surface of the as-prepared electrode. Moreover, the iron element decorated Ni foam electrode can be used as non-enzymatic glucose sensor and it exhibits not only an ultra-wide linear concentration range of 1-18 mmol/L with an outstanding sensitivity of 1.0388 m A·mmol/(L·cm2), but also an excellent ability of stability and selectivity. Therefore, this work presents a simple yet effective approach to successfully modify Ni foam as non-enzymatic glucose sensor.
基金supported by the National Natural Science Foundation of China(No.61704035)the Natural Science Foundation of Guangxi Province(2017GXNSFBA198125)the Guangxi Technology Projects(No.AD19110076 and No.AD19110063)。
文摘In this study,the application of bovine serum albumin(BSA)as a carrier to glucose-sensitive materials for the detection of glucose was proposed.Au-Cu O bimetallic nanoclusters(Au-Cu O/BSA)were prepared using BSA as a template,the new sensing material(Au-Cu O/BSA/MWCNTs)was synthesized by mixing with multi-walled carbon nanotubes(MWCNT)and applied to non-enzymatic electrochemical sensors to detect glucose stably and effectively under neutral condition.The scanning electron microscopy was used to investigate the morphology of the synthesized nanocomposite.The electrochemical properties of the sensor were studied by cyclic voltammetry.Glucose detection experiments show that Au-Cu O/BSA/MWCNTs/Au electrode has good glucose detection ability,stability,accuracy,repeatability,and high selectivity in neutral environment.Unlike existing glucose-sensitive materials,due to the use of BSA,the composite material is firmly fixed to the electrode surface without a Nafion solution,which reduces the current blocking effect on the modified electrode.The composite materials can be effectively preserved for extremely long periods,higher than 80%activity is maintained at room temperature in a closed environment for 3 to 4 months,due to the special effects of BSA.In addition,the feasibility of using BSA in glucose-sensitive materials is confirmed.
基金financially supported by the National Natural Science Foundation of China (Nos.62074018 and 62174015)the Developing Project of Science and Technology of Jilin Province (No.20200301052RQ)+1 种基金the Project of Education Department of Jilin Province (No.JJKH20210831KJ)the Science and Technology Foundation of State Grid Corporation of China (No. SGTJDK00DYJS2000148)
文摘In the field of glucose sensors,the development of inexpensive and high-efficiency electrochemical glucose sensors is the current research hotspot.In this paper,CuO-Co_(3)O_(4)composite with a prickly-sphere-like morphology is prepared by the facile hydrothermal method for the non-enzymatic electrochemical glucose detection.X-ray diffraction,scanning electron microscopy,transmission electron microscopy,energy-dispersive X-ray spec-troscopy,and X-ray photoelectron spectroscopy are used to analyze the structure,composition,and morphology of the material.In addition,the electrochemical catalytic perfor-mance of CuO-Co_(3)O_(4)to glucose is obtained by cyclic voltammetry and chronoamperometry.The excellent elec-trochemical sensing performance may be attributed to the large number of catalytic sites in the prickly-sphere-like composite and the synergistic effect of Cu and Co.Under an applied voltage of 0.55 V,CuO-Co_(3)O_(4)composite shows sensitivity to glucose(1503.45μA·(mmol·L^(-1))^(-1)-cm^(-2)),a low detection limit(21.95μmol·L^(-1)),excellent selectivity,a high level of reproducibility,and good sta-bility.This indicates that the CuO-Co_(3)O_(4)composite has a broad prospect of non-enzymatic glucose sensing application.
基金the financial support of this study by the National Natural Science Foundation of China(NSFC, No. 31860468)
文摘Nanocomposite of Co3O4 and multiwalled carbon nanotube (MCNT) was synthesised using one step solvothermal method, and an electrochemical non-enzymatic glucose sensor (Co3O4-MCNT/GCE) was successfully constructed by a dropping method. The obtained Co3O4 and Co3O4- MCNT were characterized and investigated by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Quantitative analysis of glucose was performed using the amperometric (i–t) method, and plot of current difference versus concentration of glucose was linear in the range of 1.0–122μmol/L, with a linear correlation coefficient (R^2) of 0.9983 and limit of detection (LOD) of 0.28μmol/L. Sensitivity of this sensor was evaluated as 2550μA L mmol^-1 cm^-2. This new sensor produced satisfactory reproducibility and stability and was applied to monitor trace amounts of glucose in human serum samples.
基金financially supported by the National Natural Science Foundation of China(No.21805308)the Taishan Scholar Project of Shandong Province,the Fundamental Research Funds for the Central Universities(No.19CX05001A)the Graduate Innovation Project of China University of Petroleum(No.YCX2020052)。
文摘The preparation of highly sensitive and stable non-enzymatic glucose sensors is critical to the prevention and treatment of diabetes.Fe_(3)O_(4)@Au@Co Fe-LDH is prepared through a spontaneous galvanic displacement reaction.A series of structural characterizations testify the successful formation of Fe_(3)O_(4)@Au@Co FeLDH electrocatalyst,with the Au intercalating between Fe_(3)O_(4)and LDH to form the sandwich structure.Cyclic voltammetry tests indicate that Au is responsible for the electrocatalytic oxidation of glucose.The characterizations of the electrochemical sensor for glucose detection indicate that Fe_(3)O_(4)@Au@Co FeLDH possesses high sensitivity of 6342μA m M^(-1)cm^(-2),with an extremely low oxidation potential of 0.82 V vs.RHE.Even with the high glucose concentration of 15 m M,the sensitivity remains at 4359μA m M^(-1)cm^(-2).Due to the broad linear detection range(0.0375 to 15.64 m M)and the low limit of detection(12.7μM),Fe_(3)O_(4)@Au@Co Fe-LDH is applicable towards practical application.Thanks to the sandwich structure,which confines the Au in between Fe_(3)O_(4)and Co Fe-LDH,the Fe_(3)O_(4)@Au@Co Fe-LDH glucose sensor shows high long-term stability and satisfactory selectivity.The successful synthesis of the sandwichstructured Fe_(3)O_(4)@Au@Co Fe-LDH provides a new conception for the design of highly sensitive and stable non-enzymatic glucose electrodes.
基金supported by the National Key Research and Development Program of China(No.2018YFC1106802)the Postdoctoral Interdisciplinary Research Fund in Sichuan University(No.0900904153016).
文摘Mass detection of glucose,which is required in many applications,remains challenging.The commercial enzyme-based glucose test strips cannot be reused,and current non-enzymatic glucose sensors exhibit a narrow range of detection and slow glucose oxidation kinetics.Herein,controlled etching of Prussian blue analogue(PBA)nanocubes at the vertices is conducted and Au nanoparticles(Au NPs)are subsequently inlaid in the etched cavities by in-situ reduction of HAuCl4.The unique AuNP-PBA nanocomplexes exhibit low electrochemical potential for glucose oxidation,high electrocatalytic activity,and rapid redox electron transfer rate.Covalent immobilization of the Au-inlaid nanomaterials on a fine Au wire leads to a non-enzymatic glucose sensor with a particularly wide linear detection range(10μM to 16 mM),excellent anti-interference,and fast response.More importantly,the sensor is reusable,and its sensitivity is well maintained even after 150 times of detection.This new-concept material promises to enable high-throughput glucose detection at a low cost,which is essential in diabetic management and other healthcare applications.
基金supported by fundings from the National Natural Science Foundation of China(Grant Nos.51505108)the Heilongjiang Postdoctoral Science Foundation(Grant Nos.LBHZ19221)+1 种基金the China Postdoctoral Science Foundation(Grant Nos.2019M661270)Key Laboratory of Micro-systems and Microstructures Manufacturing(Harbin Institute of Technology),Ministry of Education(Grant Nos.2019KM003).
文摘Diabetes is a chronic metabolic disease that has effect on blood sugar level and affects millions of people.We present an integrated flexible and reusable graphene-based field effect transistor(GFET)nanosensor for the detection of glucose using pyrene-1-boronic acid(PBA)as the receptor.The nanosensor fabricated on the polyimide performs GFET-based rapid transduction of the glucose-PBA binding,thereby potentially allowing the detection of glucose that are sampled reliably from human bodily fluids(e.g.,sweat)in wearable sensing applications.Due to the reversible binding interaction between PBA and glucose,reusability of our nanosensor can be realized by exposing graphene surface to acidic solution.In characterizing the stability and reusability of the nanosensor for wearable applications,we investigated the effects of substrate bending,multiple reuse and long-time storage on the equilibrium dissociation constant between the PBA and glucose.Results show that bending,multiple reuse(over 10 times)and long-time storage has negligible effect on the sensing performance.The detection of glucose with a limit of detection(LOD)of 0.15 μM and a dynamic range of 0.05-100 μM,which covers the reference scope of physical examination or screening of diabetes.Hence,our flexible GFET nanosensor is promising for wearable and reusable biosensing applications.
基金supported by the National Natural Science Foundation of China(Nos.21804108,61901389)the Natural Science Foundation of Shaanxi(No.2019JM-239)+2 种基金the Fundamental Research Funds for the Central Universities(Nos.3102019PY008,3102019JC005)the Research Fund of the State Key Laboratory of Solidification Processing(NPU,No.2020-BJ-02)the 1000 Youth Talent Program of China。
文摘The metabolic disorder of glucose in human body will cause diseases such as diabetes and hyperglycemia.Hence the determination of glucose content is very important in clinic diagnosing.In recent years,researchers have proposed various non-invasive wearable sensors for rapid and real-time glucose monitoring from human body fluids.Unlike those reviews which discussed performances,detection environments or substrates of the wearable glucose sensor,this review focuses on the sensing nanomaterials since they are the key elements of most wearable glucose sensors.The sensing nanomaterials such as carbon,metals,and conductive polymers are summarized in detail.And also the structural characteristics of different sensing nanomaterials and the corresponding wearable glucose sensors are highlighted.Finally,we prospect the future development requirements of sensing nanomaterials for wearable glucose sensors.This review would give some insights to the further development of wearable glucose sensors and the modern medical treatment.
基金financially supported by Applied Basic Research Program of Datong(No.2018147)Natural Science Foundation of Shanxi Province(No.201801D121035)+7 种基金Natural Science Foundation of Datong(No.201819)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2019L0735,No.2020L0478,No.2020L0498)Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi(No.2020KJ023)Key Scientific and Technological Projects of Datong City(No.2018014)Special Key Laboratory of Guizhou Province(No.[2018]004)the Science Foundation of the Science and Technology Department of Guizhou Province(No.[2014]17)Natural Science Research Project of the Education Department of Guizhou Province(No.[2015]386)Science and Technology of Sichuan Province(No.2016JY0096)。