Thin-film flexible solar cells are lightweight and mechanically robust.Along with rapidly advancing battery technology,flexible solar panels are expected to create niche products that require lightweight,mechanical fl...Thin-film flexible solar cells are lightweight and mechanically robust.Along with rapidly advancing battery technology,flexible solar panels are expected to create niche products that require lightweight,mechanical flexibility,and moldability into complex shapes,such as roof-panel for electric automobiles,foldable umbrellas,camping tents,etc.In this paper,we provide a comprehensive assessment of relevant materials suitable for making flexible solar cells.Substrate materials reviewed include metals,ceramics,glasses,and plastics.For active materials,we focus primarily on emerging new semiconductors including small organic donor/acceptor molecules,conjugated donor/acceptor polymers,and organometal halide perovskites.For electrode materials,transparent conducting oxides,thin metal films/nanowires,nanocarbons,and conducting polymers are reviewed.We also discuss the merits,weaknesses,and future perspectives of these materials for developing next-generation flexible photovoltaics.展开更多
Cu2ZnSn(S,Se)4(CZTSSe)solar cells have resource distribution and economic advantages.The main cause of their low efficiency is carrier loss resulting from recombination of photo-generated electron and hole.To overcome...Cu2ZnSn(S,Se)4(CZTSSe)solar cells have resource distribution and economic advantages.The main cause of their low efficiency is carrier loss resulting from recombination of photo-generated electron and hole.To overcome this,it is important to understand their electron-hole behavior characteristics.To determine the carrier separation characteristics,we measured the surface potential and the local current in terms of the absorber depth.The elemental variation in the intragrains(IGs)and at the grain boundaries(GBs)caused a band edge shift and bandgap(Eg)change.At the absorber surface and subsurface,an upward Ec and Ev band bending structure was observed at the GBs,and the carrier separation was improved.At the absorber center,both upward Ec and Ev and downward Ec-upward Ev band bending structures were observed at the GBs,and the carrier separation was degraded.To improve the carrier separation and suppress carrier recombination,an upward Ec and Ev band bending structure at the GBs is desirable.展开更多
Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of f...Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of flexible Sb_(2)Se_(3) photovoltaic devices is temporarily limited by the complicated intrinsic defects and the undesirable contact interfaces.Herein,a high-quality Sb_(2)Se_(3) absorber layer with large crystal grains and benign [hkl] growth orientation can be first prepared on a Mo foil substrate.Then NaF intermediate layer is introduced between Mo and Sb_(2)Se_(3),which can further optimize the growth of Sb_(2)Se_(3)thin film.Moreover,positive Na ion diffusion enables it to dramatically lower barrier height at the back contact interface and passivate harmful defects at both bulk and heterojunction.As a result,the champion substrate structured Mo-foil/Mo/NaF/Sb_(2)Se_(3)/CdS/ITO/Ag flexible thin-film solar cell delivers an obviously higher efficiency of 8.03% and a record open-circuit voltage(V_(OC)) of 0.492 V.This flexible Sb_(2)Se_(3) device also exhibits excellent stability and flexibility to stand large bending radius and multiple bending times,as well as superior weak light photo-response with derived efficiency of 12.60%.This work presents an effective strategy to enhance the flexible Sb_(2)Se_(3) device performance and expand its potential photovoltaic applications.展开更多
Focusing on the low open circuit voltage(V_(OC))and fill factor(FF)in flexible Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells,indium(In)ions are introduced into the CZTSSe absorbers near Mo foils to modify the back interface...Focusing on the low open circuit voltage(V_(OC))and fill factor(FF)in flexible Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells,indium(In)ions are introduced into the CZTSSe absorbers near Mo foils to modify the back interface and passivate deep level defects in CZTSSe bulk concurrently for improving the performance of flexible device.The results show that In doping effectively inhibits the formation of secondary phase(Cu(S,Se)_(2))and VSndefects.Further studies demonstrate that the barrier height at the back interface is decreased and the deep level defects(Cu_(Sn)defects)in CZTSSe bulk are passivated.Moreover,the carrier concentration is increased and the V_(OC) deficit(V_(OC,def))is decreased significantly due to In doping.Finally,the flexible CZTSSe solar cell with 10.01%power conversion efficiency(PCE)has been obtained.The synergistic strategy of interface modification and bulk defects passivation through In incorporation provides a new thought for the fabrication of efficient flexible kesterite-based solar cells.展开更多
To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃...To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications.展开更多
Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological...Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm.展开更多
With the gradual progression of the carbon neutrality target,the future of our electricity supply will experience a massive increase in solar generation,and approximately 50%of the global electricity generation will c...With the gradual progression of the carbon neutrality target,the future of our electricity supply will experience a massive increase in solar generation,and approximately 50%of the global electricity generation will come from solar generation by 2050.This provides the opportunity for researchers to diversify the applications of photovoltaics(PVs)and integrate for daily use in the future.Flexible solar cell technology is the next frontier in solar PV and is the key way to achieve CO_(2)neutrality.The integration of PV technology with other fields will greatly broaden the development areas for the PV industry,providing products with higher added value.In this paper,we reviewed the latest research progress on flexible solar cells(perovskite solar cells,organic solar cells,and flexible silicon solar cells),and proposed the future applications of flexible solar cell technology.展开更多
SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and ad...SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and adhesive polyelectrolyte with ethanolamine(EA)and poly-acrylic acid(PAA).The linear PAA was crosslinked by EA,forming a 3D network that stabilized the SnO_(2)nanoparticle dispersion.An organic–inorganic hybrid ETL is developed by introducing the cross-linked PAA-EA into SnO_(2)ETL,which prevents nano particle agglomeration and facilitates uniform SnO_(2)film formation with fewer defects.Additionally,the PAA-EA-modified SnO_(2)facilitated a uniform and compact perovskite film,enhancing the interface contact and carrier transport.Consequently,the PAA-EA-modified PSCs exhibited excellent PCE of 24.34%and 22.88%with high reproducibility for areas of 0.045 and 1.00 cm~2,respectively.Notably,owing to structure reinforce effect of PAA-EA in SnO_(2)ETL,flexible device demonstrated an impressive PCE of 23.34%while maintaining 90.1%of the initial PCE after 10,000 bending cycles with a bending radius of 5 mm.This successful approach of polyelectrolyte reinforced hybrid organic–inorganic ETL displays great potential for flexible,large-area PSCs application.展开更多
Flexible perovskite solar cells have attracted widespread attention due to their unique advantages in lightweight,high flexibility,and easy deformation,which are suitable for portable electronics.However,the inverted(...Flexible perovskite solar cells have attracted widespread attention due to their unique advantages in lightweight,high flexibility,and easy deformation,which are suitable for portable electronics.However,the inverted(p-i-n)structured devices suffer from poor stability largely due to the low adhesion at the brittle interface(the hole transport layer/perovskite).Herein,zeolitic imidazolate framework-67(ZIF-67)is applied to inverted structured cells to optimize the interface and prolong the device lifetime.As a result,the flexible devices based on ZIF-67 obtain the champion power conversion efficiency of 20.16%.Over 1000 h under continuous light irradiation,the device retains 96%and 80%of its original efficiency without and with bias,respectively.Notably,devices show mechanical endurance with over 78%efficiency retention after 10,000 cycles of consecutive bending cycles(R=6 mm).The introduction of ZIF-67 suppresses the cracking in device bending,which results in improved environmental stability and bending durability.展开更多
The passivation of non-radiative states and inhibition of band tailings are desirable for improving the open-circuit voltage(V_(oc))of CZTSSe thin-film solar cells.Recently,alkali metal doping has been investigated to...The passivation of non-radiative states and inhibition of band tailings are desirable for improving the open-circuit voltage(V_(oc))of CZTSSe thin-film solar cells.Recently,alkali metal doping has been investigated to passivate defects in CZTSSe films.Herein,we investigate Li doping effects by applying Li OH into CZTSSe precursor solutions,and verify that carrier transport is enhanced in the CZTSSe solar cells.Systematic characterizations demonstrate that Li doping can effectively passivate non-radiative recombination centers and reduce band tailings of the CZTSSe films,leading to the decrease in total defect density and the increase in separation distance between donor and acceptor.Fewer free carriers are trapped in the band tail states,which speeds up carrier transport and reduces the probability of deep-level defects capturing carriers.The charge recombination lifetime is about twice as long as that of the undoped CZTSSe device,implying the heterojunction interface recombination is also inhibited.Besides,Li doping can increase carrier concentration and enhance build-in voltage,leading to a better carrier collection.By adjusting the Li/(Li+Cu)ratio to 18%,the solar cell efficiency is increased significantly to 9.68%with the fill factor(FF)of 65.94%,which is the highest FF reported so far for the flexible CZTSSe solar cells.The increased efficiency is mainly attributed to the reduction of V_(oc)deficit and the improved CZTSSe/Cd S junction quality.These results open up a simple route to passivate non-radiative states and reduce the band tailings of the CZTSSe films and improve the efficiency of the flexible CZTSSe solar cells.展开更多
Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recom...Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recombination of CZTSSe/CdS heterojunction interface.We improve the deposition technique to obtain compact CdS layers without any pinholes for flexible CZTSSe solar cells on Mo foils.The efficiency of the device is improved from 5.7%to 6.86%by highquality junction interface.Furthermore,aiming at the S loss of CdS film,the S source concentration in deposition process is investigated to passivate the defects and improve the CdS film quality.The flexible Mo-foil-based CZTSSe solar cells are obtained to possess a 9.05%efficiency with a VOC of 0.44 V at an optimized S source concentration of 0.68 mol/L.Systematic physical measurements indicate that the S source control can effectively suppress the interface recombination and reduce the VOCdeficit.For the CZTSSe device bending characteristics,the device efficiency is almost constant after1000 bends,manifesting that the CZTSSe device has an excellent mechanical flexibility.The effective improvement strategy of CdS deposition is expected to provide a new perspective for promoting the conversion efficiency of CZTSSe solar cells.展开更多
In few years only, the efficiency record of perovskite solar cells(PSCs) has raised quickly from 3.8% to over 22%. This emerging photovoltaic technology has primarily shown its great potential of industrialization. ...In few years only, the efficiency record of perovskite solar cells(PSCs) has raised quickly from 3.8% to over 22%. This emerging photovoltaic technology has primarily shown its great potential of industrialization. Flexible PSCs are thought to be one of the most priority options for mass production, related to the intrinsic advantage of perovskite thin films which could be deposited by facile solution processes at low temperature. Flexible PSCs have at least four advantages in comparison to the rigid counterpart:(1) it can generate higher power output at lighter weight,(2) it is easily portable,(3) it can be easily attached to architectures or textiles with diverse shapes, and(4) it is compatible with roll-to-roll fabrication in a large scale. In this review, we have summarized recent development of the key materials and technologies applied in flexible PSCs. The key materials including flexible substrates, transparent and conductive electrodes, and interfacial materials; some key technologies about roll-to-roll manufacture, encapsulation technology have been overviewed. Finally, a prospect on possible application directions of flexible PSCs has been discussed.展开更多
Flexible perovskite solar cells(FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the d...Flexible perovskite solar cells(FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the development of flexible electrodes compatible with the optoelectronic properties of perovskite. In this review, the recent progress of flexible electrodes used in FPSCs is comprehensively reviewed. The major features of flexible transparent electrodes, including transparent conductive oxides, conductive polymer, carbon nanomaterials and nanostructured metallic materials are systematically compared. And the corresponding modification strategies and device performance are summarized. Moreover, flexible opaque electrodes including metal films, opaque carbon materials and metal foils are critically assessed. Finally, the development directions and difficulties of flexible electrodes are given.展开更多
Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through soluti...Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability.展开更多
The demand for lightweight, flexible, and high-performance portable power sources urgently requires high-efficiency and stable flexible solar cells. In the case of perovskite solar cells(PSCs), most of the common elec...The demand for lightweight, flexible, and high-performance portable power sources urgently requires high-efficiency and stable flexible solar cells. In the case of perovskite solar cells(PSCs), most of the common electron transport layer(ETL) needs to be annealed for improving the optoelectronic properties,while conventional flexible substrates could barely stand the high temperature. Herein, a vacuumassisted annealing SnO_(2) ETL at low temperature(100℃) is utilized in flexible PSCs and achieved high efficiency of 20.14%. Meanwhile, the open-circuit voltage(V_(oc)) increases from 1.07 V to 1.14 V. The flexible PSCs also show robust bending stability with 86.8% of the initial efficiency is retained after 1000 bending cycles at a bending radius of 5 mm. X-ray photoelectron spectroscopy(XPS), atomic force microscopy(AFM), and contact angle measurements show that the density of oxygen vacancies, the surface roughness of the SnO_(2) layer, and film hydrophobicity are significantly increased, respectively. These improvements could be due to the oxygen-deficient environment in a vacuum chamber, and the rapid evaporation of solvents. The proposed vacuum-assisted low-temperature annealing method not only improves the efficiency of flexible PSCs but is also compatible and promising in the large-scale commercialization of flexible PSCs.展开更多
Flexible perovskite solar cells(FPSCs)are supposed to play an important role in the commercialization of perovskite solar cells due to their unique properties,such as high efficiency,thin thickness and being compatibl...Flexible perovskite solar cells(FPSCs)are supposed to play an important role in the commercialization of perovskite solar cells due to their unique properties,such as high efficiency,thin thickness and being compatible with roll to roll(R2R)process for mass production.At present,deformable and lightweight FPSCs have been successfully prepared and applied as power supply by integrating with different wearable and portable electronics,which opens a niche market for photovoltaics.In this mini review,we will introduce the recent progress of FPSCs from the aspect of small-area flexible devices,R2R processed devices with large scale and emerging flexible cells with deformability and stretchability.Finally,conclusion and outlook are provided.展开更多
Currently, 86% of the energy originates from fossil fuelsforelectricity. These are expected to run out, causing severe environmental damage threatening future generations. The total impact of Small and Medium Enterpri...Currently, 86% of the energy originates from fossil fuelsforelectricity. These are expected to run out, causing severe environmental damage threatening future generations. The total impact of Small and Medium Enterprises (SMEs) on the economy is significant. Solar cells harness the sun's energy to generate electricity in an environmentally friendly manner. This study compares silicon solar cells to flexible Organic Photovoltaic solar cells (OPV) for electricity energy for a micro-business in the UK and Iraq. It shows that it is feasible to replace existing fossil fuel sources with solar cells in Iraq due to a greater amount of solar radiation striking the earth's surface. Flexible solar cells can replace a proportion of the energy requirements in the UK and a larger proportion in Iraq. Using existing 20% efficient solar cells, 28% and 83% of the energy requirements of the microbusiness can be replaced in UK and Iraq respectively. Assuming 20% efficiency for solar cells placed on windows, 74% and 220% of the energy requirements of UK and Kurdistan can be replaced respectively and the surplus stored.展开更多
Large-area AgNWs electrodes(25 cm×10 cm)were fabricated through roll-to-roll printing on the polyvinyl alcohol(PVA)modified water and oxygen barrier substrate.The modification of the barrier film with PVA improve...Large-area AgNWs electrodes(25 cm×10 cm)were fabricated through roll-to-roll printing on the polyvinyl alcohol(PVA)modified water and oxygen barrier substrate.The modification of the barrier film with PVA improved the wettability of silver nanowires on the barrier films and led to the formation of homogenous large-area AgNWs networks.The mechanical flexibility,especially the adhesion force between the silver electrode and the barrier film substrate was dramatically improved through PVA modification.The efficiency of 13.51%for the flexible OSCs with an area of 0.64 cm2 was achieved based on the PET/barrier film/PVA/AgNWs electrode.The long-term stability showed the flexible OSCs based on the PET/barrier film/PVA/AgNWs electrode have a significantly improved stability relative to the device on PET/AgNWs electrode,and comparable air stability as the rigid device with glass/ITO device.The unencapsulated devices maintained nearly 50%of the original efficiency after storage for 600 h in air.After a simple top encapsulation,the flexible devices remained at 60%of the initial efficiency after 2000 h in the air.Therefore,the flexible AgNWs electrode based on the barrier film would have the potential to improve the air storage stability of organic flexible solar cells.展开更多
The outstanding advantages of lightweight and flexibility enable flexible perovskite solar cells(PSCs)to have great application potential in mobile energy devices.Due to the low cost,low-temperature processibility,and...The outstanding advantages of lightweight and flexibility enable flexible perovskite solar cells(PSCs)to have great application potential in mobile energy devices.Due to the low cost,low-temperature processibility,and high electron mobility,SnO_(2) nanocrystals have been widely employed as the electron transport layer in flexible PSCs.To prepare high-quality SnO_(2) layers,a monodispersed nanocrystal solution is normally used.However,the SnO_(2) nanocrystals can easily aggregate,especially after long periods of storage.Herein,we develop a green and cost-effective strategy for the synthesis of high-quality SnO_(2) nanocrystals at low temperatures by introducing small molecules of glycerol,obtaining a stable and well-dispersed SnO_(2)-nanocrystal isopropanol dispersion successfully.Due to the enhanced dispersity and super wettability of this alcohol-based SnO_(2)-nanocrystal solution,large-area smooth and dense SnO_(2) films are easily deposited on the plastic conductive substrate.Furthermore,this contributes to effective charge transfer and suppressed non-radiative recombination at the interface between the SnO_(2) and perovskite layers.As a result,a greatly enhanced power conversion efficiency(PCE)of 21.8%from 19.2%is achieved for small-area flexible PSCs.A large-area 5 cm×5 cm flexible perovskite solar mini-module with a champion PCE of 16.5%and good stability is also demonstrated via this glycerol-modified SnO_(2)-nanocrystal isopropanol dispersion approach.展开更多
Flexible perovskite solar cells(f-PSCs) have experienced rapid advancements due to the light-weight, flexibility, and solution processability of the perovskite materials, which prompted the power conversion efficiency...Flexible perovskite solar cells(f-PSCs) have experienced rapid advancements due to the light-weight, flexibility, and solution processability of the perovskite materials, which prompted the power conversion efficiency(PCE) to 24.08%. However, f-PSCs still face challenges in terms of mechanical and environmental stability. This is primarily due to their inherent brittleness, the presence of residual tensile strain, and the high density of defects along the boundaries of perovskite grains. To this end, we carefully developed a cross-linkable elastomers 3-[(3-acrylamidopropyl)dimethylammonium] propanoate(ADP) with electrostatic dynamic bond, which could be in-situ cross-linked and coordinate with [Pb I6]4-to regulate the crystallization process of perovskite. The cross-linked elastomers attached to the perovskite grain boundaries could release the remaining tensile strains and mechanical stresses, leading to enhanced stability and flexibility of the f-PSCs. More importantly, the electrostatic interaction between positive and negative groups of cross-linked elastomers and hydrogen bond formation between N–H and C=O accelerate the cross-linking of ADP, endowing the flexible perovskite films with self-healing ability under mild treating conditions(60 °C for 30 min). As a result, the device achieves a remarkable PCE of 23.53%(certified 23.16%). Additionally, the device exhibits impressive mechanical sustainability and durability, retaining over 90% of initial PCE even after undergoing8,000 bending cycles.展开更多
基金Z.H.Lu would like to acknowledge the Natural Science and Engineering Research Council of Canada,and the National Natural Science Foundation of China(Grant No.11774304)for providing research fund.H.Y.Yu would like to acknowledge the financial support by Research and Application of Key Technologies of GaN-based Power Devices on Si Substrate(Grant No:2019B010128001)Research on key technologies for optimization of IoT chips and product development(Grant No.2019B010142001)+1 种基金and Study and optimization of electrostatic discharge mechanism for GaN HEMT devices(Grant No:JCYJ20180305180619573)Research of AlGaN HEMT MEMS sensor for work in extreme environment(Grant No:JCYJ20170412153356899).
文摘Thin-film flexible solar cells are lightweight and mechanically robust.Along with rapidly advancing battery technology,flexible solar panels are expected to create niche products that require lightweight,mechanical flexibility,and moldability into complex shapes,such as roof-panel for electric automobiles,foldable umbrellas,camping tents,etc.In this paper,we provide a comprehensive assessment of relevant materials suitable for making flexible solar cells.Substrate materials reviewed include metals,ceramics,glasses,and plastics.For active materials,we focus primarily on emerging new semiconductors including small organic donor/acceptor molecules,conjugated donor/acceptor polymers,and organometal halide perovskites.For electrode materials,transparent conducting oxides,thin metal films/nanowires,nanocarbons,and conducting polymers are reviewed.We also discuss the merits,weaknesses,and future perspectives of these materials for developing next-generation flexible photovoltaics.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(No.2022M3J1A1085371)by the DGIST R&D programs of the Ministry of Science and ICT(23-ET-08 and 23-CoE-ET-01)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2018R1A6A1A03025340).
文摘Cu2ZnSn(S,Se)4(CZTSSe)solar cells have resource distribution and economic advantages.The main cause of their low efficiency is carrier loss resulting from recombination of photo-generated electron and hole.To overcome this,it is important to understand their electron-hole behavior characteristics.To determine the carrier separation characteristics,we measured the surface potential and the local current in terms of the absorber depth.The elemental variation in the intragrains(IGs)and at the grain boundaries(GBs)caused a band edge shift and bandgap(Eg)change.At the absorber surface and subsurface,an upward Ec and Ev band bending structure was observed at the GBs,and the carrier separation was improved.At the absorber center,both upward Ec and Ev and downward Ec-upward Ev band bending structures were observed at the GBs,and the carrier separation was degraded.To improve the carrier separation and suppress carrier recombination,an upward Ec and Ev band bending structure at the GBs is desirable.
基金supported by the National Natural Science Foundation of China(Grant Nos.62104156,62074102)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515011256,2022A1515010979)China+1 种基金Science and Technology plan project of Shenzhen(Grant Nos.20220808165025003,20200812000347001)Chinasupported by the open foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials,State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures,Guangxi University(Grant No.2022GXYSOF13)。
文摘Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of flexible Sb_(2)Se_(3) photovoltaic devices is temporarily limited by the complicated intrinsic defects and the undesirable contact interfaces.Herein,a high-quality Sb_(2)Se_(3) absorber layer with large crystal grains and benign [hkl] growth orientation can be first prepared on a Mo foil substrate.Then NaF intermediate layer is introduced between Mo and Sb_(2)Se_(3),which can further optimize the growth of Sb_(2)Se_(3)thin film.Moreover,positive Na ion diffusion enables it to dramatically lower barrier height at the back contact interface and passivate harmful defects at both bulk and heterojunction.As a result,the champion substrate structured Mo-foil/Mo/NaF/Sb_(2)Se_(3)/CdS/ITO/Ag flexible thin-film solar cell delivers an obviously higher efficiency of 8.03% and a record open-circuit voltage(V_(OC)) of 0.492 V.This flexible Sb_(2)Se_(3) device also exhibits excellent stability and flexibility to stand large bending radius and multiple bending times,as well as superior weak light photo-response with derived efficiency of 12.60%.This work presents an effective strategy to enhance the flexible Sb_(2)Se_(3) device performance and expand its potential photovoltaic applications.
基金supported by the National Natural Science Foundation of China(62074037)the Science and Technology Department of Fujian Province(2020I0006)the Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ124)。
文摘Focusing on the low open circuit voltage(V_(OC))and fill factor(FF)in flexible Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells,indium(In)ions are introduced into the CZTSSe absorbers near Mo foils to modify the back interface and passivate deep level defects in CZTSSe bulk concurrently for improving the performance of flexible device.The results show that In doping effectively inhibits the formation of secondary phase(Cu(S,Se)_(2))and VSndefects.Further studies demonstrate that the barrier height at the back interface is decreased and the deep level defects(Cu_(Sn)defects)in CZTSSe bulk are passivated.Moreover,the carrier concentration is increased and the V_(OC) deficit(V_(OC,def))is decreased significantly due to In doping.Finally,the flexible CZTSSe solar cell with 10.01%power conversion efficiency(PCE)has been obtained.The synergistic strategy of interface modification and bulk defects passivation through In incorporation provides a new thought for the fabrication of efficient flexible kesterite-based solar cells.
基金financially supported by the Korea Institute of Energy Research(KIER)(grant no.C3-2401,2402,2403)the National Research Foundation(grant no.2022M3J1A1063019)funded by the Ministry of Science and ICT
文摘To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications.
基金supported by the National Natural Science Foundation of China(22135001)Youth Innovation Promotion Association(2019317)+2 种基金the Young Cross Team Project of CAS(JCTD-2021-14)CAS-CSIRO joint project of Chinese Academy of Sciences(121E32KYSB20190021)Vacuum Interconnected Nanotech Workstation,Suzhou Institute of Nano-Tech and Nano-Bionics of Chinese Academy of Sciences(CAS)
文摘Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm.
基金supported by the National Natural Science Foundation of China(T2322028,62105129,and 62004208)Sichuan Science and Technology Program(2023ZYD0163)+2 种基金the Science and Technology Commission of Shanghai Municipality(22ZR1473200)the Rising-Star Program of the Shanghai 2023 Science and Technology Innovation Action Plan(23QA1411100)the Autonomous Deployment Project of State Key Laboratory of Materials for Integrated Circuits(NKLJC-Z2023ZD01)。
文摘With the gradual progression of the carbon neutrality target,the future of our electricity supply will experience a massive increase in solar generation,and approximately 50%of the global electricity generation will come from solar generation by 2050.This provides the opportunity for researchers to diversify the applications of photovoltaics(PVs)and integrate for daily use in the future.Flexible solar cell technology is the next frontier in solar PV and is the key way to achieve CO_(2)neutrality.The integration of PV technology with other fields will greatly broaden the development areas for the PV industry,providing products with higher added value.In this paper,we reviewed the latest research progress on flexible solar cells(perovskite solar cells,organic solar cells,and flexible silicon solar cells),and proposed the future applications of flexible solar cell technology.
基金supported by the National Key R&D Program of China(2019YFB1503201)the National Natural Science Foundation of China(52172238,52102304,51902264)+3 种基金the Natural Science Foundation of Shanxi Province(2020JM-093)the Open project of Shaanxi Laboratory of Aerospace Power(2021SXSYS-01-03)the Science Technology and Innovation Commission of Shenzhen Municipality(JCYJ20190807111605472)the Fundamental Research Funds for the Central Universities(3102019JC0005,5000220118)。
文摘SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and adhesive polyelectrolyte with ethanolamine(EA)and poly-acrylic acid(PAA).The linear PAA was crosslinked by EA,forming a 3D network that stabilized the SnO_(2)nanoparticle dispersion.An organic–inorganic hybrid ETL is developed by introducing the cross-linked PAA-EA into SnO_(2)ETL,which prevents nano particle agglomeration and facilitates uniform SnO_(2)film formation with fewer defects.Additionally,the PAA-EA-modified SnO_(2)facilitated a uniform and compact perovskite film,enhancing the interface contact and carrier transport.Consequently,the PAA-EA-modified PSCs exhibited excellent PCE of 24.34%and 22.88%with high reproducibility for areas of 0.045 and 1.00 cm~2,respectively.Notably,owing to structure reinforce effect of PAA-EA in SnO_(2)ETL,flexible device demonstrated an impressive PCE of 23.34%while maintaining 90.1%of the initial PCE after 10,000 bending cycles with a bending radius of 5 mm.This successful approach of polyelectrolyte reinforced hybrid organic–inorganic ETL displays great potential for flexible,large-area PSCs application.
基金funding support from the National Natural Science Foundation of China(U21A20172,21975028,22005035)the Beijing Natural Science Foundation(JQ19008)the China Postdoctoral Science Foundation(2020M670144,2020M680012,2020TQ0043)。
文摘Flexible perovskite solar cells have attracted widespread attention due to their unique advantages in lightweight,high flexibility,and easy deformation,which are suitable for portable electronics.However,the inverted(p-i-n)structured devices suffer from poor stability largely due to the low adhesion at the brittle interface(the hole transport layer/perovskite).Herein,zeolitic imidazolate framework-67(ZIF-67)is applied to inverted structured cells to optimize the interface and prolong the device lifetime.As a result,the flexible devices based on ZIF-67 obtain the champion power conversion efficiency of 20.16%.Over 1000 h under continuous light irradiation,the device retains 96%and 80%of its original efficiency without and with bias,respectively.Notably,devices show mechanical endurance with over 78%efficiency retention after 10,000 cycles of consecutive bending cycles(R=6 mm).The introduction of ZIF-67 suppresses the cracking in device bending,which results in improved environmental stability and bending durability.
基金supported by the National Natural Science Foundation of China(62074037,52002073)the Science and Technology Department of Fujian Province(2020I0006)+3 种基金the Natural Science Foundation of Fujian Province(2019J01218)the Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ124)the Education and Scientific Research Project of Fujian Province(JAT200372)the Scientific Research Project of Fujian Jiangxia University(JXZ2019006)。
文摘The passivation of non-radiative states and inhibition of band tailings are desirable for improving the open-circuit voltage(V_(oc))of CZTSSe thin-film solar cells.Recently,alkali metal doping has been investigated to passivate defects in CZTSSe films.Herein,we investigate Li doping effects by applying Li OH into CZTSSe precursor solutions,and verify that carrier transport is enhanced in the CZTSSe solar cells.Systematic characterizations demonstrate that Li doping can effectively passivate non-radiative recombination centers and reduce band tailings of the CZTSSe films,leading to the decrease in total defect density and the increase in separation distance between donor and acceptor.Fewer free carriers are trapped in the band tail states,which speeds up carrier transport and reduces the probability of deep-level defects capturing carriers.The charge recombination lifetime is about twice as long as that of the undoped CZTSSe device,implying the heterojunction interface recombination is also inhibited.Besides,Li doping can increase carrier concentration and enhance build-in voltage,leading to a better carrier collection.By adjusting the Li/(Li+Cu)ratio to 18%,the solar cell efficiency is increased significantly to 9.68%with the fill factor(FF)of 65.94%,which is the highest FF reported so far for the flexible CZTSSe solar cells.The increased efficiency is mainly attributed to the reduction of V_(oc)deficit and the improved CZTSSe/Cd S junction quality.These results open up a simple route to passivate non-radiative states and reduce the band tailings of the CZTSSe films and improve the efficiency of the flexible CZTSSe solar cells.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074037,61574038,51961165108,and 51972332)the Natural Science Foundation of Fujian Province,China(Grant No.2017J01503)+2 种基金the Education and Scientific Research Project of Fujian Province,China(Grant No.JAT190010)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,China(Grant No.SKLPEE-202011)Fuzhou University,China。
文摘Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recombination of CZTSSe/CdS heterojunction interface.We improve the deposition technique to obtain compact CdS layers without any pinholes for flexible CZTSSe solar cells on Mo foils.The efficiency of the device is improved from 5.7%to 6.86%by highquality junction interface.Furthermore,aiming at the S loss of CdS film,the S source concentration in deposition process is investigated to passivate the defects and improve the CdS film quality.The flexible Mo-foil-based CZTSSe solar cells are obtained to possess a 9.05%efficiency with a VOC of 0.44 V at an optimized S source concentration of 0.68 mol/L.Systematic physical measurements indicate that the S source control can effectively suppress the interface recombination and reduce the VOCdeficit.For the CZTSSe device bending characteristics,the device efficiency is almost constant after1000 bends,manifesting that the CZTSSe device has an excellent mechanical flexibility.The effective improvement strategy of CdS deposition is expected to provide a new perspective for promoting the conversion efficiency of CZTSSe solar cells.
基金financially supported by the National Natural Science Foundation of China(51672094,51661135023)the National Key R&D Program of China(2016YFC0205002)+1 种基金the Selfdetermined and Innovative Research Funds of HUST(2016JCTD111)the open research funds of Engineering Research Center of Nano-Geo Materials of Ministry of Education,China University of Geosciences(NGM2017KF013)
文摘In few years only, the efficiency record of perovskite solar cells(PSCs) has raised quickly from 3.8% to over 22%. This emerging photovoltaic technology has primarily shown its great potential of industrialization. Flexible PSCs are thought to be one of the most priority options for mass production, related to the intrinsic advantage of perovskite thin films which could be deposited by facile solution processes at low temperature. Flexible PSCs have at least four advantages in comparison to the rigid counterpart:(1) it can generate higher power output at lighter weight,(2) it is easily portable,(3) it can be easily attached to architectures or textiles with diverse shapes, and(4) it is compatible with roll-to-roll fabrication in a large scale. In this review, we have summarized recent development of the key materials and technologies applied in flexible PSCs. The key materials including flexible substrates, transparent and conductive electrodes, and interfacial materials; some key technologies about roll-to-roll manufacture, encapsulation technology have been overviewed. Finally, a prospect on possible application directions of flexible PSCs has been discussed.
基金financially supported by the National Natural Science Foundation of China(52192610)the National Key Research and Development Program of China(Grant 2021YFA0715600)+1 种基金the Key Research and Development Program of Shaanxi Province(Grant 2020GY-310)the Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University。
文摘Flexible perovskite solar cells(FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the development of flexible electrodes compatible with the optoelectronic properties of perovskite. In this review, the recent progress of flexible electrodes used in FPSCs is comprehensively reviewed. The major features of flexible transparent electrodes, including transparent conductive oxides, conductive polymer, carbon nanomaterials and nanostructured metallic materials are systematically compared. And the corresponding modification strategies and device performance are summarized. Moreover, flexible opaque electrodes including metal films, opaque carbon materials and metal foils are critically assessed. Finally, the development directions and difficulties of flexible electrodes are given.
基金The authors acknowledge funding from the National Natural Science Foundation of China(61974150 and 51773213)Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-JSC047)+1 种基金the Fundamental Research Funds for the Central Universities,the CAS-EU S&T cooperation partner program(174433KYSB20150013)the Natural Science Foundation of Ningbo(2018A610135).
文摘Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability.
基金supported by the National Natural Science Foundation of China(61774046)。
文摘The demand for lightweight, flexible, and high-performance portable power sources urgently requires high-efficiency and stable flexible solar cells. In the case of perovskite solar cells(PSCs), most of the common electron transport layer(ETL) needs to be annealed for improving the optoelectronic properties,while conventional flexible substrates could barely stand the high temperature. Herein, a vacuumassisted annealing SnO_(2) ETL at low temperature(100℃) is utilized in flexible PSCs and achieved high efficiency of 20.14%. Meanwhile, the open-circuit voltage(V_(oc)) increases from 1.07 V to 1.14 V. The flexible PSCs also show robust bending stability with 86.8% of the initial efficiency is retained after 1000 bending cycles at a bending radius of 5 mm. X-ray photoelectron spectroscopy(XPS), atomic force microscopy(AFM), and contact angle measurements show that the density of oxygen vacancies, the surface roughness of the SnO_(2) layer, and film hydrophobicity are significantly increased, respectively. These improvements could be due to the oxygen-deficient environment in a vacuum chamber, and the rapid evaporation of solvents. The proposed vacuum-assisted low-temperature annealing method not only improves the efficiency of flexible PSCs but is also compatible and promising in the large-scale commercialization of flexible PSCs.
文摘Flexible perovskite solar cells(FPSCs)are supposed to play an important role in the commercialization of perovskite solar cells due to their unique properties,such as high efficiency,thin thickness and being compatible with roll to roll(R2R)process for mass production.At present,deformable and lightweight FPSCs have been successfully prepared and applied as power supply by integrating with different wearable and portable electronics,which opens a niche market for photovoltaics.In this mini review,we will introduce the recent progress of FPSCs from the aspect of small-area flexible devices,R2R processed devices with large scale and emerging flexible cells with deformability and stretchability.Finally,conclusion and outlook are provided.
文摘Currently, 86% of the energy originates from fossil fuelsforelectricity. These are expected to run out, causing severe environmental damage threatening future generations. The total impact of Small and Medium Enterprises (SMEs) on the economy is significant. Solar cells harness the sun's energy to generate electricity in an environmentally friendly manner. This study compares silicon solar cells to flexible Organic Photovoltaic solar cells (OPV) for electricity energy for a micro-business in the UK and Iraq. It shows that it is feasible to replace existing fossil fuel sources with solar cells in Iraq due to a greater amount of solar radiation striking the earth's surface. Flexible solar cells can replace a proportion of the energy requirements in the UK and a larger proportion in Iraq. Using existing 20% efficient solar cells, 28% and 83% of the energy requirements of the microbusiness can be replaced in UK and Iraq respectively. Assuming 20% efficiency for solar cells placed on windows, 74% and 220% of the energy requirements of UK and Kurdistan can be replaced respectively and the surplus stored.
基金supported by the National Natural Science Foundation of China(22135001)Youth Innovation Promotion Association(2019317)+4 种基金Young Cross Team Project of CAS(No.JCTD-2021-14)“Dual Carbon"Science and Technology Innovation of Jiangsu province(Industrial Prospect and Key Technology Research Program)(BE2022021)Suzhou Science and Technology Program(ST202219)CAS Special Research Assistant(SRA)Program of Suzhou Institute of Nano-Tech and Nano-Bionics(E355130101)grateful for the technical support for Jiangsu Funding Program for Excellent Postdoctoral Talent,Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(A2107).
文摘Large-area AgNWs electrodes(25 cm×10 cm)were fabricated through roll-to-roll printing on the polyvinyl alcohol(PVA)modified water and oxygen barrier substrate.The modification of the barrier film with PVA improved the wettability of silver nanowires on the barrier films and led to the formation of homogenous large-area AgNWs networks.The mechanical flexibility,especially the adhesion force between the silver electrode and the barrier film substrate was dramatically improved through PVA modification.The efficiency of 13.51%for the flexible OSCs with an area of 0.64 cm2 was achieved based on the PET/barrier film/PVA/AgNWs electrode.The long-term stability showed the flexible OSCs based on the PET/barrier film/PVA/AgNWs electrode have a significantly improved stability relative to the device on PET/AgNWs electrode,and comparable air stability as the rigid device with glass/ITO device.The unencapsulated devices maintained nearly 50%of the original efficiency after storage for 600 h in air.After a simple top encapsulation,the flexible devices remained at 60%of the initial efficiency after 2000 h in the air.Therefore,the flexible AgNWs electrode based on the barrier film would have the potential to improve the air storage stability of organic flexible solar cells.
基金supported by the National Key Research and Development Plan(No.2019YFE0107200)the National Natural Science Foundation of China(Nos.22279099,52202292,and 52172230)+3 种基金Guangdong Basic and Applied Basic Research Fund(No.2021B1515120003)the NSF of Hubei Province(No.2021CFB051)the Fundamental Research Funds for the Central Universities(No.WUT:2023IVA074)the National Research Foundation of Korea(NRF)(No.2019K1A3A1A61091345).
文摘The outstanding advantages of lightweight and flexibility enable flexible perovskite solar cells(PSCs)to have great application potential in mobile energy devices.Due to the low cost,low-temperature processibility,and high electron mobility,SnO_(2) nanocrystals have been widely employed as the electron transport layer in flexible PSCs.To prepare high-quality SnO_(2) layers,a monodispersed nanocrystal solution is normally used.However,the SnO_(2) nanocrystals can easily aggregate,especially after long periods of storage.Herein,we develop a green and cost-effective strategy for the synthesis of high-quality SnO_(2) nanocrystals at low temperatures by introducing small molecules of glycerol,obtaining a stable and well-dispersed SnO_(2)-nanocrystal isopropanol dispersion successfully.Due to the enhanced dispersity and super wettability of this alcohol-based SnO_(2)-nanocrystal solution,large-area smooth and dense SnO_(2) films are easily deposited on the plastic conductive substrate.Furthermore,this contributes to effective charge transfer and suppressed non-radiative recombination at the interface between the SnO_(2) and perovskite layers.As a result,a greatly enhanced power conversion efficiency(PCE)of 21.8%from 19.2%is achieved for small-area flexible PSCs.A large-area 5 cm×5 cm flexible perovskite solar mini-module with a champion PCE of 16.5%and good stability is also demonstrated via this glycerol-modified SnO_(2)-nanocrystal isopropanol dispersion approach.
基金supported by the National Natural Science Foundation of China (U21A20331, 81903743, 22279151,22275004)the National Science Fund for Distinguished Young Scholars(21925506)。
文摘Flexible perovskite solar cells(f-PSCs) have experienced rapid advancements due to the light-weight, flexibility, and solution processability of the perovskite materials, which prompted the power conversion efficiency(PCE) to 24.08%. However, f-PSCs still face challenges in terms of mechanical and environmental stability. This is primarily due to their inherent brittleness, the presence of residual tensile strain, and the high density of defects along the boundaries of perovskite grains. To this end, we carefully developed a cross-linkable elastomers 3-[(3-acrylamidopropyl)dimethylammonium] propanoate(ADP) with electrostatic dynamic bond, which could be in-situ cross-linked and coordinate with [Pb I6]4-to regulate the crystallization process of perovskite. The cross-linked elastomers attached to the perovskite grain boundaries could release the remaining tensile strains and mechanical stresses, leading to enhanced stability and flexibility of the f-PSCs. More importantly, the electrostatic interaction between positive and negative groups of cross-linked elastomers and hydrogen bond formation between N–H and C=O accelerate the cross-linking of ADP, endowing the flexible perovskite films with self-healing ability under mild treating conditions(60 °C for 30 min). As a result, the device achieves a remarkable PCE of 23.53%(certified 23.16%). Additionally, the device exhibits impressive mechanical sustainability and durability, retaining over 90% of initial PCE even after undergoing8,000 bending cycles.