The rendezvous and proximity operations with respect to a tumbling non-cooperative target pose high requirement for the position and attitude control accuracy of servicing spacecraft.However,multiple disturbances incl...The rendezvous and proximity operations with respect to a tumbling non-cooperative target pose high requirement for the position and attitude control accuracy of servicing spacecraft.However,multiple disturbances including parametric uncertainties,flexible vibration,and unknown nonlinear dynamics degrade the control performance significantly.In order to enhance the system anti-disturbance ability,this paper proposes a composite anti-disturbance control law for the spacecraft position and attitude tracking.Firstly,the relative position and attitude dynamic models with multiple disturbances are established,where the refined descriptions of multiple disturbances are accomplished based on their characteristics.Then,by combining a dual Disturbance ObserverBased Control(DOBC)and a sliding mode control,a composite controller with hierarchical architecture is proposed,where the dual DOBC in the feedforward channel is used to reject the flexible vibration,environment disturbance,and complicated nonlinear dynamics,while the parametric uncertainties are attenuated by the sliding mode control in the feedback channel.Stability analysis is carried out for the closed-loop system by unifying the sliding mode dynamics and observer dynamics.Finally,the effectiveness of the proposed controller is verified via numerical simulation and hardware-in-the-loop test.展开更多
Laboratory tests were conducted on a flexible riser with and without helical strakes. The aim of the present work is to further understand the response performance of the vortex induced vibration(VIV) for a riser wi...Laboratory tests were conducted on a flexible riser with and without helical strakes. The aim of the present work is to further understand the response performance of the vortex induced vibration(VIV) for a riser with helical strakes. The experiment was accomplished in the towing tank and the relative current was simulated by towing a flexible riser in one direction. Based on the modal analysis method, the displacement responses can be obtained by the measured strain. The strakes with different heights are analyzed here, and the response parameters like strain response and displacement response are studied. The experimental results show that the in-line(IL) response is as important as the cross-flow(CF) response, however, many industrial analysis methods usually ignore the IL response due to VIV. The results also indicate that the response characteristics of a bare riser can be quite distinct from that of a riser with helical strakes, and the response performance depends on the geometry on the helical strakes closely. The fatigue damage is further discussed and the results show that the fatigue damage in the CF direction is of the same order as that in the IL direction for the bare riser. However, for the riser with helical strakes, the fatigue damage in the CF direction is much smaller than that in the IL direction.展开更多
Although flexible manipulators own many potential advantages, one of their major disadvantages is the deterioration of the end-effector accuracy due to the flexibility. Therefore, how to reduce vibration is a signific...Although flexible manipulators own many potential advantages, one of their major disadvantages is the deterioration of the end-effector accuracy due to the flexibility. Therefore, how to reduce vibration is a significant problem. Inspired by the observation on the motion behaviors of animals, a new idea of decreasing motion deflection of the flexible manipulator is suggested. The concept of controllable local degrees of freedom is proposed and analyzed. By way of optimizing local motion provided by the controllable local degrees of freedom, the end-effector deflection of the flexible manipulator can be effectively decreased through dynamic coupling. The corresponding optimal method for vibration control of the flexible manipulator is put forward. The kinematic simulation is carried ant on a three-link flexible manipulator The corresponding results verify the feasibility of this method.展开更多
The theory of dynamic vibration absorber(DVA)was applied to restrain the vibration of carbody for high-speed electric multiple unit(EMU).The carbody was modeled as an Euler-Bernoulli beam with the equipment mounted on...The theory of dynamic vibration absorber(DVA)was applied to restrain the vibration of carbody for high-speed electric multiple unit(EMU).The carbody was modeled as an Euler-Bernoulli beam with the equipment mounted on the chassis regarded as a DVA.Suspension parameters of the equipment were optimized based on the modal analysis of the beam and parameter optimization of the DVA.Vertical motion equations of the carbody and equipment were derived to study the effect of the suspension parameters on the vibration of carbody,which included the suspension frequency,damping ratio,mounting position and mass.Then a 3D rigid-flexible coupled vehicle system dynamics model was built to simulate the response of carbody and equipment to track excitation.The results show that the equipment mounted on the carbody chassis can be regarded as a DVA to reduce the flexible vibration of carbody,and the optimum suspension frequency can be calculated theoretically with the first-order vertical bending mode of carbody considered.Heavy equipment should be mounted to the carbody center as close as possible to obtain a significant vibration reduction,while light equipment has quite limited contribution to that.Also,a laboratory test was conducted on the full-scale test rig which shows a good agreement with the theoretical analysis and dynamic simulations.The faster the vehicle runs,the more significant are the advantages of the elastic suspension.展开更多
基金supported by the China National Postdoctoral Program for Innovative Talents(No.BX20200031)the National Natural Science Foundation of China(Nos.62103013,61633003,61973012)the Program for Changjiang Scholars and Innovative Research Team,China(No.IRT 16R03).
文摘The rendezvous and proximity operations with respect to a tumbling non-cooperative target pose high requirement for the position and attitude control accuracy of servicing spacecraft.However,multiple disturbances including parametric uncertainties,flexible vibration,and unknown nonlinear dynamics degrade the control performance significantly.In order to enhance the system anti-disturbance ability,this paper proposes a composite anti-disturbance control law for the spacecraft position and attitude tracking.Firstly,the relative position and attitude dynamic models with multiple disturbances are established,where the refined descriptions of multiple disturbances are accomplished based on their characteristics.Then,by combining a dual Disturbance ObserverBased Control(DOBC)and a sliding mode control,a composite controller with hierarchical architecture is proposed,where the dual DOBC in the feedforward channel is used to reject the flexible vibration,environment disturbance,and complicated nonlinear dynamics,while the parametric uncertainties are attenuated by the sliding mode control in the feedback channel.Stability analysis is carried out for the closed-loop system by unifying the sliding mode dynamics and observer dynamics.Finally,the effectiveness of the proposed controller is verified via numerical simulation and hardware-in-the-loop test.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51279101,51239007 and 51490674)a Research Project on High-Technology Ships supported by the Ministry of Industry and Information Technology of Chinathe Central Financial Support of Local Key Discipline Youth Fund Project(Grant No.YC319)
文摘Laboratory tests were conducted on a flexible riser with and without helical strakes. The aim of the present work is to further understand the response performance of the vortex induced vibration(VIV) for a riser with helical strakes. The experiment was accomplished in the towing tank and the relative current was simulated by towing a flexible riser in one direction. Based on the modal analysis method, the displacement responses can be obtained by the measured strain. The strakes with different heights are analyzed here, and the response parameters like strain response and displacement response are studied. The experimental results show that the in-line(IL) response is as important as the cross-flow(CF) response, however, many industrial analysis methods usually ignore the IL response due to VIV. The results also indicate that the response characteristics of a bare riser can be quite distinct from that of a riser with helical strakes, and the response performance depends on the geometry on the helical strakes closely. The fatigue damage is further discussed and the results show that the fatigue damage in the CF direction is of the same order as that in the IL direction for the bare riser. However, for the riser with helical strakes, the fatigue damage in the CF direction is much smaller than that in the IL direction.
基金Important Project of Science and Technology Research of Ministry of Education of China (No. 307005)National Hi-tech Research and Development Program of China (863 Program, No.SQ2007AA04Z231266).
文摘Although flexible manipulators own many potential advantages, one of their major disadvantages is the deterioration of the end-effector accuracy due to the flexibility. Therefore, how to reduce vibration is a significant problem. Inspired by the observation on the motion behaviors of animals, a new idea of decreasing motion deflection of the flexible manipulator is suggested. The concept of controllable local degrees of freedom is proposed and analyzed. By way of optimizing local motion provided by the controllable local degrees of freedom, the end-effector deflection of the flexible manipulator can be effectively decreased through dynamic coupling. The corresponding optimal method for vibration control of the flexible manipulator is put forward. The kinematic simulation is carried ant on a three-link flexible manipulator The corresponding results verify the feasibility of this method.
基金supported by the National Science and Technology Support Program of China(2009BAG12A01-A02)the New Century Excellent Talents of Ministry of Education funded project(NCET-10-0664)+2 种基金the National Natural Science Foundation of China(Grant No.61134002)the National Basic Research Program of China("973"Program)(Grant No.2011CB711106)China Postdoctoral Science Foundation funded project(No:2014M550471)
文摘The theory of dynamic vibration absorber(DVA)was applied to restrain the vibration of carbody for high-speed electric multiple unit(EMU).The carbody was modeled as an Euler-Bernoulli beam with the equipment mounted on the chassis regarded as a DVA.Suspension parameters of the equipment were optimized based on the modal analysis of the beam and parameter optimization of the DVA.Vertical motion equations of the carbody and equipment were derived to study the effect of the suspension parameters on the vibration of carbody,which included the suspension frequency,damping ratio,mounting position and mass.Then a 3D rigid-flexible coupled vehicle system dynamics model was built to simulate the response of carbody and equipment to track excitation.The results show that the equipment mounted on the carbody chassis can be regarded as a DVA to reduce the flexible vibration of carbody,and the optimum suspension frequency can be calculated theoretically with the first-order vertical bending mode of carbody considered.Heavy equipment should be mounted to the carbody center as close as possible to obtain a significant vibration reduction,while light equipment has quite limited contribution to that.Also,a laboratory test was conducted on the full-scale test rig which shows a good agreement with the theoretical analysis and dynamic simulations.The faster the vehicle runs,the more significant are the advantages of the elastic suspension.