A three-dimensional finite element analysis was conducted to evaluate the feasibility of predicting the flexural properties of hydroxyapatite-reinforced poly-L-lactide acid (HA/PLLA) biocomposite using three differe...A three-dimensional finite element analysis was conducted to evaluate the feasibility of predicting the flexural properties of hydroxyapatite-reinforced poly-L-lactide acid (HA/PLLA) biocomposite using three different schemes. The scheme 1, originated from a beam analysis, was used to determine the flexural modulus analytically while the scheme 2 and 3 were designed to have different loading and boundary conditions using a finite element cell modeling approach. An empirical approach using Chow's formula and experimental data were used for comparison with the predicted results. In order to reduce the computational time and save the storage space involved in determining the effect of varying particle volume fractions on the flexural properties of HA/PLLA, a superelement technique was applied. The results using the scheme 3 and the Chow's formula were found to be in reasonable agreement with experimental results over the range of particle volume fraction. In addition to the Chow's formula, local stress distribution and the failure processes in HA/PLLA were simulated using the finite element technique.展开更多
Selecting H-60 PVC foam, four-axis E-glass non-woven fabric and vinyl resin, a type of innovative reinforced sandwich composite as grooved perforation sandwich (GPS) were fabricated by VIMP. The interfacial structur...Selecting H-60 PVC foam, four-axis E-glass non-woven fabric and vinyl resin, a type of innovative reinforced sandwich composite as grooved perforation sandwich (GPS) were fabricated by VIMP. The interfacial structure between the face and core of the sandwich is innovative because of the acuminate grooves in both sides of foam core and the holes perforated along core’s height. The fabrication results show that VIMP is a high-speed and cost-effective manufacturing method. The mechanical properties of the reinforced foam core were tested. The typical flexural failure modes of sandwich specimens were observed. The flexural stiffness and ultimate bearing capacity of sandwich were studied by ordinary sandwich beam theory and finite element method.展开更多
In this paper, acrylonitrile-butadiene-styrene (ABS) nanocomposite foams are produced using carbon dioxide through the solid-state batch process. Microcellular closed-cell foams are produced with the relative densit...In this paper, acrylonitrile-butadiene-styrene (ABS) nanocomposite foams are produced using carbon dioxide through the solid-state batch process. Microcellular closed-cell foams are produced with the relative density ranging from 0.38 to 0.97. The effects of the processing conditions on the density, morphology, and flexural properties of ABS and its nanocomposite foams are studied. It is found that nanoclay particles, as nucleating sites, play an important role in reducing the size of cells and increasing their number in the unit volume of foamed polymer, as well as increasing the flexural modulus of foam through reinforcing its matrix.展开更多
Flax and hemp fibers were used as reinforcing materials to commingle with polypropylene(PP)fiber to realize the mixture of two materials at the stage of yarn.Meanwhile,PP filaments were introduced to produce a core-sp...Flax and hemp fibers were used as reinforcing materials to commingle with polypropylene(PP)fiber to realize the mixture of two materials at the stage of yarn.Meanwhile,PP filaments were introduced to produce a core-spun yarn with flax/PP as core and PP filament as outer sheath.The commingled yarns were woven into 2D fabric which was used as the prefabricated material.The composite laminates were prepared by hot press technology.The effects of manufacture technology,yarn structure,and fiber weight fraction on flexural properties of composites were investigated.展开更多
To improve the flexural properties of Beetle Elytron Plates(BEPs)and clarify the effect of the transition arcs(chamfers)between the skins and the trabeculae,the chamfers were set in BEPs,and then the influence of the ...To improve the flexural properties of Beetle Elytron Plates(BEPs)and clarify the effect of the transition arcs(chamfers)between the skins and the trabeculae,the chamfers were set in BEPs,and then the influence of the chamfer on BEPs'mechanical properties was investigated via experimentation and the Finite Elemnent Method simulation(FEM).The results indicate that the influence of the chamfer on the flexural properties and ductility was most obvious in the Trabecular Beetle Elytron Plates(TBEPs),less obvious in the Honeycomb Plates(HPs)and basically no efiect was observed on End-trabecular Beetle Elytron Plates(EBEPs).The chamfer can improve the mechanical stability of EBEPSs.As the chamfer diameter increased in the BEPs,the length of the residual trabecular root on the skin increased when failure occurred in the TBEPs.The crack position in the honeycomb wallsof the HPs gradually shifted from the skin to the center.The EBEPs continued to exhibit oblique cracks.From the perspective of the force characteristics of these BEPs.combined with numerical simulation,the influence mechanism of the chamfer on their flcxural propertics was investigated.展开更多
In this study,maize stalk tegument separated from the maize pith was crushed to obtain the fiber.The cross-linking maize starch adhesives considering four main factors(water content,gelatinization temperature,NaOH as ...In this study,maize stalk tegument separated from the maize pith was crushed to obtain the fiber.The cross-linking maize starch adhesives considering four main factors(water content,gelatinization temperature,NaOH as gelatinization agent and Na2B4O7·10H2O as cross-linking agent)with three levels were prepared based on an orthogonal test scheme L9(34)in order to increase the water-resisting property and the bonding strength of the common maize starch adhesives.The bonding properties of maize starch adhesives were characterized using shearing strength under compression loading.Physical models of fiber reinforced composites were established according to the microstructure analysis of the four species of insects’elytra including Protaetia orentalis,Copris ochus Motschulsky,Anoplophora chinensis and Cytister bengalensis Aube,which will provide the biomimetic models for the biomimetic laminated boards.The maize stalk fiber biomimetic laminated boards were prepared based on the structural models of the elytra material.The flexural strength and flexural elastic modulus of the biomimetic boards were examined.The results showed that the flexural strengths of the single layer jute fiber,-reinforced maize stalk fiber boards and the dual layer jute fiber reinforced maize stalk fiber boards are higher than those of the common maize stalk fiber boards and the other three groups of jute fiber hybrid reinforced stalk fiber boards because of the biomimetic laminated design.展开更多
According to the theory of phononic crystals, the hydraulic pipeline is designed to be a periodic structure composed of steel pipes and hoses to suppress the vibration of the hydraulic system with band gaps. We presen...According to the theory of phononic crystals, the hydraulic pipeline is designed to be a periodic structure composed of steel pipes and hoses to suppress the vibration of the hydraulic system with band gaps. We present theoretical and experimental investigations into the flexural vibration transfer properties of a high-pressure periodic pipe with the force on the inner pipe wall by oii pressure taken into consideration. The results show that the vibration attenuation of periodic pipe decreases along with the elevation of working pressure for the hydraulic system, and the band gaps in low frequency ranges move towards high frequency ranges. The periodic pipe has good vibration attenuation performance in the frequency range below 1000 Hz and the vibration of the hydraulic system is effectively suppressed. A11 the results are validated by experiment. The experimental results show a good agreement with the numerical calculations, thus the flexural vibration transfer properties of the high- pressure periodic pipe can be precisely calculated by taking the fluid structure interaction between the pipe and oil into consideration. This study provides an effective way for the vibration control of the hydraulic system.展开更多
Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS).Four polypropylene fibers’volume fractions and five slag pr...Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS).Four polypropylene fibers’volume fractions and five slag proportions were considered.An experiment was conducted to obtain the fatigue lives at three stress levels in 20 Hz frequency and at a constant stress level of 0.59 in four frequency respectively.Mechanism and evaluation were investigated based on the experimental data.Fatigue life span models were established.The results show that the addition of polypropylene fibers improves the flexural fatigue cumulative strength and fatigue life span.It is proposed that the slag particles and hydrated products improve Interfacial Transition Zone(ITZ)structure and benefit flexural fatigue performance.A composite reinforce effect is found with the incorporation of slag and polypropylene fibers.The optimum mixture contents 55%slag with 0.6%polypropylene fiber for the cumulative fatigue stress.Fatigue properties are decreased as the stress level increasing,the higher frequency reduces the fatigue strength more than lower frequency at a constant stress level.展开更多
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas...An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.展开更多
Hem-fir plywood were exposed to two brown rot fungi, Gloeophyllum trabeum and Postia placenta, and one white rot fungus, Trametes versicolor, to investigate the effect of fungal decay on mechanical properties of plywo...Hem-fir plywood were exposed to two brown rot fungi, Gloeophyllum trabeum and Postia placenta, and one white rot fungus, Trametes versicolor, to investigate the effect of fungal decay on mechanical properties of plywood. Results showed that modulus of rupture (MOR) and modulus of elasticity (MOE) of hem-fir plywood declined significantly by inoculating fungi, and weight loss of sample had a modest decrease. The fungi also made a greater effect on MOR than on MOE. Of three fungi, Postia placenta caused a most significant weight loss, and Gloeophyllum trabeum resulted in a largest flexural properties loss. Substantial declines in MOR and MOE of hem-fir plywood were also observed when the plywood samples were stored under wet conditions over 15 weeks, even in the absence of fungal attack.展开更多
Poly(2-hydroxyethyl methacrylate)(PHEMA)and poly(2-hydroxyethyl methacrylate-co-sodium methacrylate) [P(HEMA-co-SMA)]hydrogels with different compositions were prepared to be used as intravaginal rings,and their gelat...Poly(2-hydroxyethyl methacrylate)(PHEMA)and poly(2-hydroxyethyl methacrylate-co-sodium methacrylate) [P(HEMA-co-SMA)]hydrogels with different compositions were prepared to be used as intravaginal rings,and their gelation time,water content,mechanical properties and morphology were investigated.The water content of PHEMA and P(HEMA-co-SMA) hydrogels decreased as the concentration of the monomer and the degree of crosslinking increased,while the water content significantly increased as the content of SMA,the hydrophilic monomer,increased.The increasing of the concentration of the crosslinking agent affected the tensile and flexural properties highly.The presence of a proper small amount of SMA also led the tensile and flexural modulus to move to a higher level.The results showed that P(HEMA-co-SMA) hydrogel with high drug load and good mechanical properties at optimum preparation conditions can be prepared for intravaginal rings to deliver nonhormonal contraceptives.These results may be applied to prepare better intravaginal drug delivery devices.展开更多
A novel epoxy-imide resin based on diglycidyl ether of bisphenol-A and N-(4-hydroxyphenyl)terahydrophthalic anhydrideimide(HTAM) was synthesized. The structural characterization of the epoxy-imide resin was conduc...A novel epoxy-imide resin based on diglycidyl ether of bisphenol-A and N-(4-hydroxyphenyl)terahydrophthalic anhydrideimide(HTAM) was synthesized. The structural characterization of the epoxy-imide resin was conducted by FT-IR spectra. 4,4'-diaminodiphneylmethane(DDM) was used as a curing agent for the epoxy-imide resin. The thermal properties of the cured resin were evaluated with dynamic mechanical analyses(DMA) and thermogravimetric analysis(TGA). The results showed that the cured resin exhibited a high glass transition temperature(Tg) of 186 ℃ when the molar amount of HTAM was 0.04 mol in the resin. The yields of the cured resin at 800 ℃ raised from 16.45% to 19.41%. The flexural properties were also measured, the flexural strength raised from 79.4 to 95.7 MPa, and the flexural modulus exhibited from 2.6 to 3.0 GPa.展开更多
Two kinds of 2.5D deep straight-joint structure ultra-high molecular weight polyethylene(UHMWPE)(twisted and original) fibers woven fabric reinforced epoxy resin composites were prepared by the hand lay-up method....Two kinds of 2.5D deep straight-joint structure ultra-high molecular weight polyethylene(UHMWPE)(twisted and original) fibers woven fabric reinforced epoxy resin composites were prepared by the hand lay-up method. Subsequently, the flexural property, microstructures, and failure mechanisms of the composites were also investigated. The average flexural strength of 2.5D deep bend-joint structure twisted fiber and original fiber woven fabric composites were 176.66 MPa and 204.45 MPa, respectively. The results of the characteristics indicated that the twist was the main factor which affected the flexural performance. Flexural property vitally relied on the strength of the fiber itself. Twist decreased the strength of the yarns, which meant that when the mechanical property of woven fabric reinforced composites was improved, the yarns must be kept straight in the woven fabric. The study are extremely valuable to guide the improvement of the mechanical property of the woven fabric reinforced composites.展开更多
Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mec...Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mechanical properties of the composites before and after UV accelerated weathering. HDPE, wood fibers, pigments and other processing additives were dry-mixed in a high-speed mixer. The mixtures were extruded by two-step extrusion process with a self-designed twin-screw/single-screw extruder system. Color of the samples was determined according to CIE 1976 L^*a^*b^* system by a spec- trophotometer and the bending properties were tested to evaluate the mechanical properties before and after accelerated UV weathering. The result shows that the modulus of elasticity of WF/HDPE did not obvi- ously changed after incorporating with the pigments, but the bending strength increased. After accelerated aging for 2000 h, both color and mechanical properties significantly changed. Iron oxide red and black performed better than the other two pigments, and the pigments dosage of 2.28% in the composites is favourable.展开更多
Damping improvement in composite structures via introducing nanofillers generally has remarkable negative effects on the other mechanical properties. Therefore, in the present work, SiC and A1203 nanoparticles' infus...Damping improvement in composite structures via introducing nanofillers generally has remarkable negative effects on the other mechanical properties. Therefore, in the present work, SiC and A1203 nanoparticles' infusion effects on the flexural, interracial and vibration properties of epoxy matrix and glass fiber reinforced epoxy (GFR/E) laminates were investigated. Unidirectional (UD-GFR/E) and quasi-isotropic (QI-GFR/E) laminates with [0/± 45/90]s and [90/±45/0]s stack- ing sequences were hybridized by the optimum nanoparticles percentages. Results from off-axis flexural strengths of UD-GFR/E demonstrate good fiber/nanophased-matrix interracial bonding. The interlaminar shear stress between the adjacent layers with different orientations/strains of duc- tile QI-GFR/SiC/E laminates results in decreasing the flexural strengths respectively by 24.3% and 9.1% for [0/±45/90]s and [90/± 45/0]s stacking sequences and increasing the dissipated interfacial friction energy and thus the damping by 105.7% and 26.1%. The damping of QI-GFR/E, QI-GFR/SiC/E and QI-GFR/AI203/E laminates with [90/± 45/0]s stacking sequence was increased by 111.4%, 29.7% and 32.9% respectively compared to [0/± 45/90]s stacking sequence.展开更多
This study reports the investigations for repair of thermoplastic based automotive bumpers and bars with modified friction stir welding(MFSW)process.For MFSW,consumable tool of polyamide6(PA6)composite has been used f...This study reports the investigations for repair of thermoplastic based automotive bumpers and bars with modified friction stir welding(MFSW)process.For MFSW,consumable tool of polyamide6(PA6)composite has been used for joining of acrylonitrile butadiene styrene(ABS)composites.The dissimilar thermoplastics were processed for maintaining a useful range of melt flow properties followed by preparation of feed stock filament for fused deposition modeling(FDM)process through screw extrusion.Finally,3D printed PA6 based consumable rapid tool(RT)was prepared for MFSW.The joints prepared were subjected to flexural,hardness,morphological and thermal testing.The study has suggested the that maximum mechanical strength was obtained for sample welded at 1400 r/min,50 mm/min transverse speed and 3 mm plunge depth,whereas the minimum mechanical strength was obtained for sample welded at 1000 r/min,30 mm/min transverse speed and 2 mm plunge depth.The results are also supported with thermal analysis and photomicrographs.展开更多
Fiber reinforced polymer(FRP)has been used in the construction industry because of its advantages such as high strength,light weight,corrosion resistance,low density and high elasticity.This paper presents a review of...Fiber reinforced polymer(FRP)has been used in the construction industry because of its advantages such as high strength,light weight,corrosion resistance,low density and high elasticity.This paper presents a review of bonding techniques adopted to strengthen timber beams using FRP to achieve larger spans.Different methods of bonding between FRP and timber beams have been summarized with a focus on the influencing factors and their effects as well as relevant bond-slip models proposed for fundamental understanding.Experimental investigations to evaluate the flexural performance of timber beams strengthened by FRP bars,sheets and wraps have also been critically reviewed to identify key influencing parameters.Limited research available on the shear performance of FRP reinforced timber beams have been analyzed to determine the influencing factors of the shear performance in timber-FRP beams.The paper finally presents an overall summary of the current-state-of-the-art and proposes some future research directions in the field.展开更多
Ultra-high molecular weight polyethylene(UHMWPE) fiber/epoxy composites were fabricated by a vacuum assisted resin infused(VARI) processing technology. The curing condition of composites was at a cure temperature ...Ultra-high molecular weight polyethylene(UHMWPE) fiber/epoxy composites were fabricated by a vacuum assisted resin infused(VARI) processing technology. The curing condition of composites was at a cure temperature of 80 ℃ for 3h in a drying oven. The characteristics of 2.5D(shallow bend-joint and deep straight-joint) structure and 3D orthogonal structure were compared. The failure behavior, flexural strength, and microstructures of both composites were investigated. It was found that the flexural property was closely related to undulation angle θ. The flexural strength of 3D orthogonal structure composite was superior to the other two structures composites with the same weave parameters and resin.展开更多
The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specim...The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease.展开更多
A turtle carapace bio-inspired Ti matrix hybrid composite was successfully fabricated in this work. This composite incorporates two parts: the Ti-Al intermetallic multilayered composite and continuous SiC fibers-rein...A turtle carapace bio-inspired Ti matrix hybrid composite was successfully fabricated in this work. This composite incorporates two parts: the Ti-Al intermetallic multilayered composite and continuous SiC fibers-reinforced Ti matrix composite. In the Ti-Al intermetallic multilayered composite part, a series of Ti-Al intermetallics compounds, including Ti3Al, TiAl, TiAl2 and TiAl3, were formed between the Ti layers. In the continuous SiC fibers-reinforced Ti matrix composite part, SiC fibers and Ti matrix were found to be bonded well through weak interface reaction. Flexural strength of this material reached 1.21 ±0.16 GPa, measured by three-point bending test. The deformation features suggest that the hierarchical structure combining ductile Ti layers/matrix with brittle high-strength Ti-Al intermetallics layers/SiC fibers can effectively enhance the mechanical properties of the bio-inspired hybrid composite.展开更多
基金Project supported by the Research Committee of the Hong Kong Polytechnic University (No.G-YX34).
文摘A three-dimensional finite element analysis was conducted to evaluate the feasibility of predicting the flexural properties of hydroxyapatite-reinforced poly-L-lactide acid (HA/PLLA) biocomposite using three different schemes. The scheme 1, originated from a beam analysis, was used to determine the flexural modulus analytically while the scheme 2 and 3 were designed to have different loading and boundary conditions using a finite element cell modeling approach. An empirical approach using Chow's formula and experimental data were used for comparison with the predicted results. In order to reduce the computational time and save the storage space involved in determining the effect of varying particle volume fractions on the flexural properties of HA/PLLA, a superelement technique was applied. The results using the scheme 3 and the Chow's formula were found to be in reasonable agreement with experimental results over the range of particle volume fraction. In addition to the Chow's formula, local stress distribution and the failure processes in HA/PLLA were simulated using the finite element technique.
基金Funded by the Special Prophase Project on Basic Research of The Na-tional Department of Scientific and Technology(No. 2008CB617613)the National Natural Science Foundation of China (No. 50978134)the Research Award Fund for Young Teachers of Nanjing University of Technology
文摘Selecting H-60 PVC foam, four-axis E-glass non-woven fabric and vinyl resin, a type of innovative reinforced sandwich composite as grooved perforation sandwich (GPS) were fabricated by VIMP. The interfacial structure between the face and core of the sandwich is innovative because of the acuminate grooves in both sides of foam core and the holes perforated along core’s height. The fabrication results show that VIMP is a high-speed and cost-effective manufacturing method. The mechanical properties of the reinforced foam core were tested. The typical flexural failure modes of sandwich specimens were observed. The flexural stiffness and ultimate bearing capacity of sandwich were studied by ordinary sandwich beam theory and finite element method.
文摘In this paper, acrylonitrile-butadiene-styrene (ABS) nanocomposite foams are produced using carbon dioxide through the solid-state batch process. Microcellular closed-cell foams are produced with the relative density ranging from 0.38 to 0.97. The effects of the processing conditions on the density, morphology, and flexural properties of ABS and its nanocomposite foams are studied. It is found that nanoclay particles, as nucleating sites, play an important role in reducing the size of cells and increasing their number in the unit volume of foamed polymer, as well as increasing the flexural modulus of foam through reinforcing its matrix.
文摘Flax and hemp fibers were used as reinforcing materials to commingle with polypropylene(PP)fiber to realize the mixture of two materials at the stage of yarn.Meanwhile,PP filaments were introduced to produce a core-spun yarn with flax/PP as core and PP filament as outer sheath.The commingled yarns were woven into 2D fabric which was used as the prefabricated material.The composite laminates were prepared by hot press technology.The effects of manufacture technology,yarn structure,and fiber weight fraction on flexural properties of composites were investigated.
基金funded by the National Key R&D Program of China(Grant No.2017YFC0703700).
文摘To improve the flexural properties of Beetle Elytron Plates(BEPs)and clarify the effect of the transition arcs(chamfers)between the skins and the trabeculae,the chamfers were set in BEPs,and then the influence of the chamfer on BEPs'mechanical properties was investigated via experimentation and the Finite Elemnent Method simulation(FEM).The results indicate that the influence of the chamfer on the flexural properties and ductility was most obvious in the Trabecular Beetle Elytron Plates(TBEPs),less obvious in the Honeycomb Plates(HPs)and basically no efiect was observed on End-trabecular Beetle Elytron Plates(EBEPs).The chamfer can improve the mechanical stability of EBEPSs.As the chamfer diameter increased in the BEPs,the length of the residual trabecular root on the skin increased when failure occurred in the TBEPs.The crack position in the honeycomb wallsof the HPs gradually shifted from the skin to the center.The EBEPs continued to exhibit oblique cracks.From the perspective of the force characteristics of these BEPs.combined with numerical simulation,the influence mechanism of the chamfer on their flcxural propertics was investigated.
基金The project was supported by National Science Fund for Distinguished Young Scholars of China(Grant No.50025516)National Natural Science Foundation of China(Grant No.50675087,50673037,5030600131)+1 种基金“985 Project”of Jilin University,Natural Science Foundation of Henan Educational Committee(Grant No.2009B210006)Science Foundation(2008QN004)and Scientific Research Foundation for Ph.Doctor,Henan University of Science and Technology.
文摘In this study,maize stalk tegument separated from the maize pith was crushed to obtain the fiber.The cross-linking maize starch adhesives considering four main factors(water content,gelatinization temperature,NaOH as gelatinization agent and Na2B4O7·10H2O as cross-linking agent)with three levels were prepared based on an orthogonal test scheme L9(34)in order to increase the water-resisting property and the bonding strength of the common maize starch adhesives.The bonding properties of maize starch adhesives were characterized using shearing strength under compression loading.Physical models of fiber reinforced composites were established according to the microstructure analysis of the four species of insects’elytra including Protaetia orentalis,Copris ochus Motschulsky,Anoplophora chinensis and Cytister bengalensis Aube,which will provide the biomimetic models for the biomimetic laminated boards.The maize stalk fiber biomimetic laminated boards were prepared based on the structural models of the elytra material.The flexural strength and flexural elastic modulus of the biomimetic boards were examined.The results showed that the flexural strengths of the single layer jute fiber,-reinforced maize stalk fiber boards and the dual layer jute fiber reinforced maize stalk fiber boards are higher than those of the common maize stalk fiber boards and the other three groups of jute fiber hybrid reinforced stalk fiber boards because of the biomimetic laminated design.
文摘According to the theory of phononic crystals, the hydraulic pipeline is designed to be a periodic structure composed of steel pipes and hoses to suppress the vibration of the hydraulic system with band gaps. We present theoretical and experimental investigations into the flexural vibration transfer properties of a high-pressure periodic pipe with the force on the inner pipe wall by oii pressure taken into consideration. The results show that the vibration attenuation of periodic pipe decreases along with the elevation of working pressure for the hydraulic system, and the band gaps in low frequency ranges move towards high frequency ranges. The periodic pipe has good vibration attenuation performance in the frequency range below 1000 Hz and the vibration of the hydraulic system is effectively suppressed. A11 the results are validated by experiment. The experimental results show a good agreement with the numerical calculations, thus the flexural vibration transfer properties of the high- pressure periodic pipe can be precisely calculated by taking the fluid structure interaction between the pipe and oil into consideration. This study provides an effective way for the vibration control of the hydraulic system.
基金Funded by the National Science and Technology Support Plan (No.2006BAD11B03)Shaanxi Provincial Natural Science Foundation(No.SJ08E111)
文摘Properties and mechanism were investigated on flexural fatigue of concrete containing polypropylene fibers and ground granulated blast furnace slag(GGBFS).Four polypropylene fibers’volume fractions and five slag proportions were considered.An experiment was conducted to obtain the fatigue lives at three stress levels in 20 Hz frequency and at a constant stress level of 0.59 in four frequency respectively.Mechanism and evaluation were investigated based on the experimental data.Fatigue life span models were established.The results show that the addition of polypropylene fibers improves the flexural fatigue cumulative strength and fatigue life span.It is proposed that the slag particles and hydrated products improve Interfacial Transition Zone(ITZ)structure and benefit flexural fatigue performance.A composite reinforce effect is found with the incorporation of slag and polypropylene fibers.The optimum mixture contents 55%slag with 0.6%polypropylene fiber for the cumulative fatigue stress.Fatigue properties are decreased as the stress level increasing,the higher frequency reduces the fatigue strength more than lower frequency at a constant stress level.
基金The National Natural Science Foundation of China(No. 50808043)the National Basic Research Program of China (973 Program) (No. 2009CB623200)Foundation of Jiangsu Key Laboratory of Construction Materials,Program for Special Talents in Six Fields of Jiangsu Province(No. 2011-JZ-010)
文摘An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.
基金This research was supported by Forest Research Labora-tory, Oregon State University
文摘Hem-fir plywood were exposed to two brown rot fungi, Gloeophyllum trabeum and Postia placenta, and one white rot fungus, Trametes versicolor, to investigate the effect of fungal decay on mechanical properties of plywood. Results showed that modulus of rupture (MOR) and modulus of elasticity (MOE) of hem-fir plywood declined significantly by inoculating fungi, and weight loss of sample had a modest decrease. The fungi also made a greater effect on MOR than on MOE. Of three fungi, Postia placenta caused a most significant weight loss, and Gloeophyllum trabeum resulted in a largest flexural properties loss. Substantial declines in MOR and MOE of hem-fir plywood were also observed when the plywood samples were stored under wet conditions over 15 weeks, even in the absence of fungal attack.
文摘Poly(2-hydroxyethyl methacrylate)(PHEMA)and poly(2-hydroxyethyl methacrylate-co-sodium methacrylate) [P(HEMA-co-SMA)]hydrogels with different compositions were prepared to be used as intravaginal rings,and their gelation time,water content,mechanical properties and morphology were investigated.The water content of PHEMA and P(HEMA-co-SMA) hydrogels decreased as the concentration of the monomer and the degree of crosslinking increased,while the water content significantly increased as the content of SMA,the hydrophilic monomer,increased.The increasing of the concentration of the crosslinking agent affected the tensile and flexural properties highly.The presence of a proper small amount of SMA also led the tensile and flexural modulus to move to a higher level.The results showed that P(HEMA-co-SMA) hydrogel with high drug load and good mechanical properties at optimum preparation conditions can be prepared for intravaginal rings to deliver nonhormonal contraceptives.These results may be applied to prepare better intravaginal drug delivery devices.
基金Funded by the National Natural Science Foundation of China(No.51572205)the National Natural Science Foundation of Hubei Province,China(No.2014CFB854)the Equipment Pre-Research Joint Fund of EDD and MOE(No.6141A02033209)
文摘A novel epoxy-imide resin based on diglycidyl ether of bisphenol-A and N-(4-hydroxyphenyl)terahydrophthalic anhydrideimide(HTAM) was synthesized. The structural characterization of the epoxy-imide resin was conducted by FT-IR spectra. 4,4'-diaminodiphneylmethane(DDM) was used as a curing agent for the epoxy-imide resin. The thermal properties of the cured resin were evaluated with dynamic mechanical analyses(DMA) and thermogravimetric analysis(TGA). The results showed that the cured resin exhibited a high glass transition temperature(Tg) of 186 ℃ when the molar amount of HTAM was 0.04 mol in the resin. The yields of the cured resin at 800 ℃ raised from 16.45% to 19.41%. The flexural properties were also measured, the flexural strength raised from 79.4 to 95.7 MPa, and the flexural modulus exhibited from 2.6 to 3.0 GPa.
基金Funded by the National Natural Science Foundation of China(No.51001117)
文摘Two kinds of 2.5D deep straight-joint structure ultra-high molecular weight polyethylene(UHMWPE)(twisted and original) fibers woven fabric reinforced epoxy resin composites were prepared by the hand lay-up method. Subsequently, the flexural property, microstructures, and failure mechanisms of the composites were also investigated. The average flexural strength of 2.5D deep bend-joint structure twisted fiber and original fiber woven fabric composites were 176.66 MPa and 204.45 MPa, respectively. The results of the characteristics indicated that the twist was the main factor which affected the flexural performance. Flexural property vitally relied on the strength of the fiber itself. Twist decreased the strength of the yarns, which meant that when the mechanical property of woven fabric reinforced composites was improved, the yarns must be kept straight in the woven fabric. The study are extremely valuable to guide the improvement of the mechanical property of the woven fabric reinforced composites.
基金supported by the National Natural Science Foundation of China (30671644, 30771680)
文摘Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mechanical properties of the composites before and after UV accelerated weathering. HDPE, wood fibers, pigments and other processing additives were dry-mixed in a high-speed mixer. The mixtures were extruded by two-step extrusion process with a self-designed twin-screw/single-screw extruder system. Color of the samples was determined according to CIE 1976 L^*a^*b^* system by a spec- trophotometer and the bending properties were tested to evaluate the mechanical properties before and after accelerated UV weathering. The result shows that the modulus of elasticity of WF/HDPE did not obvi- ously changed after incorporating with the pigments, but the bending strength increased. After accelerated aging for 2000 h, both color and mechanical properties significantly changed. Iron oxide red and black performed better than the other two pigments, and the pigments dosage of 2.28% in the composites is favourable.
文摘Damping improvement in composite structures via introducing nanofillers generally has remarkable negative effects on the other mechanical properties. Therefore, in the present work, SiC and A1203 nanoparticles' infusion effects on the flexural, interracial and vibration properties of epoxy matrix and glass fiber reinforced epoxy (GFR/E) laminates were investigated. Unidirectional (UD-GFR/E) and quasi-isotropic (QI-GFR/E) laminates with [0/± 45/90]s and [90/±45/0]s stack- ing sequences were hybridized by the optimum nanoparticles percentages. Results from off-axis flexural strengths of UD-GFR/E demonstrate good fiber/nanophased-matrix interracial bonding. The interlaminar shear stress between the adjacent layers with different orientations/strains of duc- tile QI-GFR/SiC/E laminates results in decreasing the flexural strengths respectively by 24.3% and 9.1% for [0/±45/90]s and [90/± 45/0]s stacking sequences and increasing the dissipated interfacial friction energy and thus the damping by 105.7% and 26.1%. The damping of QI-GFR/E, QI-GFR/SiC/E and QI-GFR/AI203/E laminates with [90/± 45/0]s stacking sequence was increased by 111.4%, 29.7% and 32.9% respectively compared to [0/± 45/90]s stacking sequence.
文摘This study reports the investigations for repair of thermoplastic based automotive bumpers and bars with modified friction stir welding(MFSW)process.For MFSW,consumable tool of polyamide6(PA6)composite has been used for joining of acrylonitrile butadiene styrene(ABS)composites.The dissimilar thermoplastics were processed for maintaining a useful range of melt flow properties followed by preparation of feed stock filament for fused deposition modeling(FDM)process through screw extrusion.Finally,3D printed PA6 based consumable rapid tool(RT)was prepared for MFSW.The joints prepared were subjected to flexural,hardness,morphological and thermal testing.The study has suggested the that maximum mechanical strength was obtained for sample welded at 1400 r/min,50 mm/min transverse speed and 3 mm plunge depth,whereas the minimum mechanical strength was obtained for sample welded at 1000 r/min,30 mm/min transverse speed and 2 mm plunge depth.The results are also supported with thermal analysis and photomicrographs.
基金the National Natural Science Foundation of China(Nos.51878354&51308301)the Natural Science Foundation of Jiangsu Province(Nos.BK20181402&BK20130978)+1 种基金Six Talent Peak High-Level Projects of Jiangsu Province(No.JZ029)Qinglan Project of Jiangsu Higher Education Institutions and the Ministry of Housing and Urban-Rural Science Project of Jiangsu Province under Grant No.JS2021ZD10。
文摘Fiber reinforced polymer(FRP)has been used in the construction industry because of its advantages such as high strength,light weight,corrosion resistance,low density and high elasticity.This paper presents a review of bonding techniques adopted to strengthen timber beams using FRP to achieve larger spans.Different methods of bonding between FRP and timber beams have been summarized with a focus on the influencing factors and their effects as well as relevant bond-slip models proposed for fundamental understanding.Experimental investigations to evaluate the flexural performance of timber beams strengthened by FRP bars,sheets and wraps have also been critically reviewed to identify key influencing parameters.Limited research available on the shear performance of FRP reinforced timber beams have been analyzed to determine the influencing factors of the shear performance in timber-FRP beams.The paper finally presents an overall summary of the current-state-of-the-art and proposes some future research directions in the field.
基金Funded by the National Natural Science Foundation of China(No.51001117)
文摘Ultra-high molecular weight polyethylene(UHMWPE) fiber/epoxy composites were fabricated by a vacuum assisted resin infused(VARI) processing technology. The curing condition of composites was at a cure temperature of 80 ℃ for 3h in a drying oven. The characteristics of 2.5D(shallow bend-joint and deep straight-joint) structure and 3D orthogonal structure were compared. The failure behavior, flexural strength, and microstructures of both composites were investigated. It was found that the flexural property was closely related to undulation angle θ. The flexural strength of 3D orthogonal structure composite was superior to the other two structures composites with the same weave parameters and resin.
基金Projects(51278209 and 51478047) supported by the National Natural Science Foundation of ChinaProject(ZQN-PY110) supported by Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,China+1 种基金Project(2014FJ-NCET-ZR03) supported by Program for New Century Excellent Talents in Fujian Province University,ChinaProject(JA13005) supported by Incubation Programme for Excellent Young Science and Technology Talents in Fujian Province Universities,China
文摘The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease.
基金financially supported by the Defense Industrial Technology Development Program(JCKY2017205B032)National Natural Science Foundation of China(Nos.51405458,51371066 and 51331005)
文摘A turtle carapace bio-inspired Ti matrix hybrid composite was successfully fabricated in this work. This composite incorporates two parts: the Ti-Al intermetallic multilayered composite and continuous SiC fibers-reinforced Ti matrix composite. In the Ti-Al intermetallic multilayered composite part, a series of Ti-Al intermetallics compounds, including Ti3Al, TiAl, TiAl2 and TiAl3, were formed between the Ti layers. In the continuous SiC fibers-reinforced Ti matrix composite part, SiC fibers and Ti matrix were found to be bonded well through weak interface reaction. Flexural strength of this material reached 1.21 ±0.16 GPa, measured by three-point bending test. The deformation features suggest that the hierarchical structure combining ductile Ti layers/matrix with brittle high-strength Ti-Al intermetallics layers/SiC fibers can effectively enhance the mechanical properties of the bio-inspired hybrid composite.