期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
MULTIVARIABLE MODEL REFERENCE ADAPTIVE CONTROL FOR A TURBOFAN ENGINE 被引量:6
1
作者 Fan Jun Huang Jinquan +1 位作者 Sun Jianguo Feng Zhengping(Dep. Of Power Engineering, Nanjing University of Aeronauticsand Astronautics, Nanjing,China, 210026) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1996年第4期300-304,共5页
A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performan... A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performance of the system over the fullflight envelope. Simulation results also show the good effectiveness of reducing interactionin the multivariable system with significant coupling. The control system developed has awide frequency band to satisfy the strict engineering requirement and is practical for engineering applications. 展开更多
关键词 turbofan engines model reference adaptive control flight envelopes multivariable control
下载PDF
Adaptive augmentation of gain-scheduled controller for aerospace vehicles 被引量:8
2
作者 Xiyuan Huang Qing Wang +2 位作者 Yali Wang Yanze Hou Chaoyang Dong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期272-280,共9页
This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed appr... This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist. 展开更多
关键词 adaptive control gain-scheduled control flight envelope aerospace vehicle
下载PDF
Safety flight envelope calculation and protection control of UAV based on disturbance observer 被引量:1
3
作者 Biao Ma Mou Chen 《Security and Safety》 2023年第4期85-101,共17页
In this paper,as for the unmanned air vehicle(UAV)under external disturbance,an attainable-equilibrium-set-based safety fight envelope(SFE)calculation method is proposed,based on which a prescribed performance protect... In this paper,as for the unmanned air vehicle(UAV)under external disturbance,an attainable-equilibrium-set-based safety fight envelope(SFE)calculation method is proposed,based on which a prescribed performance protection control scheme is presented.Firstly,the existing definition of the SFE based on attainable equilibrium set(AES)is extended to make it consistent and suitable for the UAV system under disturbance.Secondly,a higher-order disturbance observer(HODO)is developed to estimate the disturbances and the disturbance estimation is applied in the computation of the SFE.Thirdly,by using the calculated SFE,a desired safety trajectory based on the time-varying safety margin function and first-order filter is developed to prevent the states of the UAV system from exceeding the SFE.Moreover,an SFE protection controller is proposed by combining the desired safety trajectory,backstepping method,HODO design,and prescribed performance(PP)control technique.In particular,the closed-loop system is established on the basis of disturbance estimation error,filter error,and tracking error.Finally,the stability of the closed-loop system is verified by the Lyapunov stability theory,and the simulations are presented to illustrate the effectiveness of the proposed control scheme. 展开更多
关键词 Unmanned aerial vehicle(UAV) safety flight envelope(SFE) attainable equilibrium set(AES) higher order disturbance observer(HODO) backstepping method prescribed performance control
原文传递
EMMAE failure detection system and failure evaluation over flight performance 被引量:1
4
作者 Yueheng Qiu Weiguo Zhang +1 位作者 Xiaoxiong Liu Pengxuan Zhao 《International Journal of Intelligent Computing and Cybernetics》 EI 2012年第3期401-420,共20页
Purpose-The purpose of this paper is to present the research into fault detection and isolation(FDI)and evaluation of the reduction of performance after failures occurred in the flight control system(FCS)during its mi... Purpose-The purpose of this paper is to present the research into fault detection and isolation(FDI)and evaluation of the reduction of performance after failures occurred in the flight control system(FCS)during its mission operation.Design/methodology/approach–The FDI is accomplished via using the multiple models scheme which is developed based on the Extend Kalman Filter(EKF)algorithm.Towards this objective,the healthy mode of the FCS under different type of failures,including the control surfaces and structural,should be considered.It developed a bank of extended multiple models adaptive estimation(EMMAE)to detect and isolate the above mentioned failures in the FCS.In addition,the performances including the flight envelope,the voyage and endurance in cruising are proposed to reference and evaluate the process of mission,especially for UAV under failure conditions.Findings-The contribution of this paper is to provide the information not only about the failures,but also considering whether the UAV can accomplish the task for the ground station.Originality/value-The main contribution of this paper is in the areas of the structural and control surface faults researching,which are occurred in the mission procedures and emphasized the identification of those failures’magnitudes.The FDI scheme includes the performance evaluation,while the evaluation obtained through the extensive numerical simulations and saved in the offline database.As a consequence,it is more accurate and less computationally demanding while evaluating the performance. 展开更多
关键词 Fault detection and isolation(FDI) Extend Kalman Filter(EKF) Extended multiple models adaptive estimation(EMMAE) flight envelope UAV flight control flight operations Failure(mechanical)
原文传递
Dynamic attack zone of air-to-air missile after being launched in random wind field 被引量:18
5
作者 Hui Yaoluo Nan Ying +2 位作者 Chen Shaodong Ding Quanxin Wu Shengliang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1519-1528,共10页
A new concept is presented for air-to-air missile which is dynamic attack zone after being launched in random wind field. This new concept can be used to obtain the 4-dimensional (4-D) information regarding the dyna... A new concept is presented for air-to-air missile which is dynamic attack zone after being launched in random wind field. This new concept can be used to obtain the 4-dimensional (4-D) information regarding the dynamic envelope of an air-to-air missile at any flight time airned at different flight targets considering influences of random wind, in the situation of flight fighters coop- crated with missiles fighting against each other. Based on an air-to-air missile model, some typical cases of dynamic attack zone after being launched in random wind field were numerically simulated. Compared with the simulation results of traditional dynamic envelope, the properties of dynamic attack zone after being launched are as follows. The 4-D dynamic attack zone after being launched is inside traditional maximum dynamic envelope, but its forane boundary is usually not inside traditional no-escape dynamic envelope; Traditional dynamic attack zone can just be reliably used at launch time, while dynamic envelope after being launched can be reliably and accurately used during any flight antagonism time. Traditional envelope is a special case of dynamic envelope after being launched when the dynamic envelope is calculated at the launch time: the dynamic envelope after being launched can be inflt, enced by the random wind field. 展开更多
关键词 Air-to-air missiles Dynamic attack zone afterbeing launched:Traditional dynamic attackenvelope:flight dynamics:flight envelopes Numerical calculationprocedures:Simulation analysis
原文传递
Wide-range model predictive control for aero-engine transient state 被引量:1
6
作者 Bing YU Zhouyang LI +1 位作者 Hongwei KE Tianhong ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第7期246-260,共15页
To perform transient state control of an aero-engine,a structure that combines linear controller and min–max selector is widely adopted,which is inherently conservative and therefore limits the fulfillment of the eng... To perform transient state control of an aero-engine,a structure that combines linear controller and min–max selector is widely adopted,which is inherently conservative and therefore limits the fulfillment of the engine potential.Model predictive control is a new control method that has vast application prospects in the field of aero-engine control.Therefore,this paper proposes a wide-range model predictive controller that can control the engine over a wide range within the flight envelope.This paper first introduces the engine parameters and the model prediction algorithm used by the controller.Then a wide-range model prediction controller with a three-layer nested structure is presented.These three layers of the structure are univariate controller,nominal point controller,and wide-range controller from inside to outside.Finally,by analyzing and verifying the effectiveness of the univariate controller for small-range variations and the wide-range model predictive controller for large-range parameter variations,it is demonstrated that the controller can schedule the controller’s output based on inlet altitude,Mach number,and lowpressure shaft corrected speed,and ensure that the limits are not exceeded.It is concluded that the designed wide-range model predictive controller has good dynamic effect and safety. 展开更多
关键词 flight envelopes Model predictive control Predictive control systems Transients Turbines
原文传递
Fuzzy adaptive tracking control within the full envelope for an unmanned aerial vehicle 被引量:2
7
作者 Liu Zhi Wang Yong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1273-1287,共15页
Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) ... Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) is proposed. The controller consists of a fuzzy baseline controller and an adaptive increment, and the main highlight is that the fuzzy baseline controller and adaptation laws are both based on the fuzzy multiple Lyapunov function approach, which helps to reduce the conservatism for the large envelope and guarantees satisfactory tracking performances with strong robustness simultaneously within the whole envelope. The constraint condition of the fuzzy baseline controller is provided in the form of linear matrix inequality(LMI), and it specifies the satisfactory tracking performances in the absence of uncertainties. The adaptive increment ensures the uniformly ultimately bounded(UUB) predication errors to recover satisfactory responses in the presence of uncertainties. Simulation results show that the proposed controller helps to achieve high-accuracy tracking of airspeed and altitude desirable commands with strong robustness to uncertainties throughout the entire flight envelope. 展开更多
关键词 flight control systems Full flight envelope Fuzzy adaptive tracking control Fuzzy multiple Lyapunov function Fuzzy T–S model Single hidden layer neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部