The techniques widely used in ultrasonic measurements are based on the determination of the time of flight (T.o.F). A short train of waves is transmitted and same transducer is used for reception of the reflected sign...The techniques widely used in ultrasonic measurements are based on the determination of the time of flight (T.o.F). A short train of waves is transmitted and same transducer is used for reception of the reflected signal for the pulse-echo measurement applications. The amplitude of the received waveform is an envelope which starts from zero reaches to a peak and then dies out. The echoes are mostly detected by simple threshold crossing technique, which is also cause of error. In this paper digital signal processing is used to calculate the time delay in reception i.e. T.o.F, for which a maximum similarity between the reference and the delayed echo signals is obtained. To observe the effect of phase uncertainties and frequency shifts (Doppler), this processing is carried out, both directly on the actual wave shape and after extracting the envelopes of the reference and delayed echo signals. Several digital signal processing algorithms are considered and the effects of different factors such as sampling rate, resolution of digitization and S/N ratio are analyzed. Result show accuracy, computing time and cost for different techniques.展开更多
为了研究管制员飞行冲突调配的人因差错问题,进而有效评估管制员解决飞行冲突的可靠性,以保障空中交通的安全运行,提出系统理论过程分析(System Theoretic Process Analysis, STPA)与认知可靠性与失误分析方法(Cognitive Reliability an...为了研究管制员飞行冲突调配的人因差错问题,进而有效评估管制员解决飞行冲突的可靠性,以保障空中交通的安全运行,提出系统理论过程分析(System Theoretic Process Analysis, STPA)与认知可靠性与失误分析方法(Cognitive Reliability and Error Analysis Method, CREAM)相结合的人因可靠性分析方法。首先,通过STPA方法构建系统控制模型,识别不安全控制行为(Unsafe Control Action, UCA)以及致因因素,找到管制员在调配飞行冲突过程中可能存在的差错行为;其次,基于CREAM扩展法对管制员的差错行为进行定量分析,得到管制员调配飞行冲突的人因失误概率。研究显示:使用该方法能够系统、全面地识别出管制员在调配飞行冲突过程中出现的差错行为,进而计算管制员飞行冲突调配的人因失误概率。实例分析表明该方法可以预测管制员在飞行冲突调配过程中的人因失误概率及可靠性,为管制员人因可靠性分析提供了新思路。展开更多
In-flight particle velocity and flux distribution were measured using CCD thermal spray monitor system during supersonic plasma spray processing with nano-structured Al_2O_3-TiO_2 feed stocks. According to the results...In-flight particle velocity and flux distribution were measured using CCD thermal spray monitor system during supersonic plasma spray processing with nano-structured Al_2O_3-TiO_2 feed stocks. According to the results of particle flux measurement, the largest radian of the divergent particle stream is about 0.2. Within the measuring range, top speed of in-flight particles reached 800m/s. Particle acceleration was accomplished within 4cm down stream of the nozzle. Average particle velocity (about 450m/s) exceeded local sound speed (340m/s) even at a mean standoff distance of 17cm. With increasing mean standoff distance, average velocity of in-flight particle decreased according to a parabolic rule approximately. Image diagnosis showed that the result of in-flight particle velocity measurement is credible.展开更多
This paper presents a theoretic implementation method of Morphing Unmanned Submersible Aerial Vehicle (MUSAV), which can both submerge in the water and fly in the air. Two different shapes are put forward so that th...This paper presents a theoretic implementation method of Morphing Unmanned Submersible Aerial Vehicle (MUSAV), which can both submerge in the water and fly in the air. Two different shapes are put forward so that the vehicle can suit both submergence and flight, considering the tremendous differences between hydrodynamic configuration and aerodynamic configuration of a vehicle. The transition of the two shapes can be achieved by using morphing technology. The water-to-air process, including water-exit, morphing, take-off and steady flight, is analyzed. The hydrodynamic and aerodynamic model of the vehicle exiting the water surface obliquely and then taking off into the air has been founded. The control strategy after morphing is analyzed and the control method is given. Numerical method is used to validate the motion model of the water-exit process. Results of simulations show the validity of the proposed model and the feasibility of MUSAV in theory.展开更多
为识别飞行冲突事故的诱发事件与关键演化链路,提出了一种基于事理图谱的事故分析方法。首先依据系统理论过程分析(System Theoretic Process Analysis,STPA)方法辨识飞行冲突场景潜在风险事件,归纳出描述各组件交互过程的场景分析框架...为识别飞行冲突事故的诱发事件与关键演化链路,提出了一种基于事理图谱的事故分析方法。首先依据系统理论过程分析(System Theoretic Process Analysis,STPA)方法辨识飞行冲突场景潜在风险事件,归纳出描述各组件交互过程的场景分析框架;再利用自然语言处理方法从事故文本中提取结构化事件,基于语义相似度匹配建立与风险事件的映射,组成事件演化链条,构建事理图谱;通过对飞行冲突场景进行仿真,运用统计指标定量分析网络拓扑结构,揭示事件对事故演化过程的影响力。结果表明,构建的事理图谱可视化诊断出机组突破管制员指令、机组操作不当导致偏航、航空器机上通讯导航设备故障、管制员纠正指令发布过晚、空中交通预警和防撞系统(Traffic Alert and Collision Avoidance System,TCAS)发出异常措施通告/活动通告(Resolution Advisory/Traffic Advisory,RA/TA)警告、航空器出现飞行汇聚趋势6个诱发事件与3条关键演化链路,其中机组突破管制员指令与管制员指令发布过晚为重点管控事件。展开更多
This paper presents a novel onboard system called In-Flight Awareness Augmentation System (IFA<sup>2</sup>S) to improve flight safety. IFA<sup>2</sup>S is designed to semi-automatically (with h...This paper presents a novel onboard system called In-Flight Awareness Augmentation System (IFA<sup>2</sup>S) to improve flight safety. IFA<sup>2</sup>S is designed to semi-automatically (with human supervision) avoid hazards and accidents due to either internal or external causal factors. The requirements were defined in an innovative way using Systems-Theoretic Process Analysis (STPA) method and applied next to model the system. IFA<sup>2</sup>S increases aircraft awareness regarding both itself and its environment and, at the same time, recognizes platform and operational constraints to act in accordance to predefined decision algorithms. Results are presented through simulations and flight tests using state machines designed to allow the adoption of appropriate actions for the identified hazards. The different decision algorithms are evaluated over as many as possible hazard situations by simulations conducted with software Labview and XPlane flight simulator. Flight tests are performed in a small fixed wing aircraft and make use of a limited version IFA<sup>2</sup>S, partially attending identified requirements. Results support the conclusion that IFA<sup>2</sup>S is capable of improving flight safety.展开更多
文摘The techniques widely used in ultrasonic measurements are based on the determination of the time of flight (T.o.F). A short train of waves is transmitted and same transducer is used for reception of the reflected signal for the pulse-echo measurement applications. The amplitude of the received waveform is an envelope which starts from zero reaches to a peak and then dies out. The echoes are mostly detected by simple threshold crossing technique, which is also cause of error. In this paper digital signal processing is used to calculate the time delay in reception i.e. T.o.F, for which a maximum similarity between the reference and the delayed echo signals is obtained. To observe the effect of phase uncertainties and frequency shifts (Doppler), this processing is carried out, both directly on the actual wave shape and after extracting the envelopes of the reference and delayed echo signals. Several digital signal processing algorithms are considered and the effects of different factors such as sampling rate, resolution of digitization and S/N ratio are analyzed. Result show accuracy, computing time and cost for different techniques.
文摘为了研究管制员飞行冲突调配的人因差错问题,进而有效评估管制员解决飞行冲突的可靠性,以保障空中交通的安全运行,提出系统理论过程分析(System Theoretic Process Analysis, STPA)与认知可靠性与失误分析方法(Cognitive Reliability and Error Analysis Method, CREAM)相结合的人因可靠性分析方法。首先,通过STPA方法构建系统控制模型,识别不安全控制行为(Unsafe Control Action, UCA)以及致因因素,找到管制员在调配飞行冲突过程中可能存在的差错行为;其次,基于CREAM扩展法对管制员的差错行为进行定量分析,得到管制员调配飞行冲突的人因失误概率。研究显示:使用该方法能够系统、全面地识别出管制员在调配飞行冲突过程中出现的差错行为,进而计算管制员飞行冲突调配的人因失误概率。实例分析表明该方法可以预测管制员在飞行冲突调配过程中的人因失误概率及可靠性,为管制员人因可靠性分析提供了新思路。
文摘In-flight particle velocity and flux distribution were measured using CCD thermal spray monitor system during supersonic plasma spray processing with nano-structured Al_2O_3-TiO_2 feed stocks. According to the results of particle flux measurement, the largest radian of the divergent particle stream is about 0.2. Within the measuring range, top speed of in-flight particles reached 800m/s. Particle acceleration was accomplished within 4cm down stream of the nozzle. Average particle velocity (about 450m/s) exceeded local sound speed (340m/s) even at a mean standoff distance of 17cm. With increasing mean standoff distance, average velocity of in-flight particle decreased according to a parabolic rule approximately. Image diagnosis showed that the result of in-flight particle velocity measurement is credible.
基金financially supported by the National Natural Science Foundation of China(Grant No.51541905)
文摘This paper presents a theoretic implementation method of Morphing Unmanned Submersible Aerial Vehicle (MUSAV), which can both submerge in the water and fly in the air. Two different shapes are put forward so that the vehicle can suit both submergence and flight, considering the tremendous differences between hydrodynamic configuration and aerodynamic configuration of a vehicle. The transition of the two shapes can be achieved by using morphing technology. The water-to-air process, including water-exit, morphing, take-off and steady flight, is analyzed. The hydrodynamic and aerodynamic model of the vehicle exiting the water surface obliquely and then taking off into the air has been founded. The control strategy after morphing is analyzed and the control method is given. Numerical method is used to validate the motion model of the water-exit process. Results of simulations show the validity of the proposed model and the feasibility of MUSAV in theory.
文摘This paper presents a novel onboard system called In-Flight Awareness Augmentation System (IFA<sup>2</sup>S) to improve flight safety. IFA<sup>2</sup>S is designed to semi-automatically (with human supervision) avoid hazards and accidents due to either internal or external causal factors. The requirements were defined in an innovative way using Systems-Theoretic Process Analysis (STPA) method and applied next to model the system. IFA<sup>2</sup>S increases aircraft awareness regarding both itself and its environment and, at the same time, recognizes platform and operational constraints to act in accordance to predefined decision algorithms. Results are presented through simulations and flight tests using state machines designed to allow the adoption of appropriate actions for the identified hazards. The different decision algorithms are evaluated over as many as possible hazard situations by simulations conducted with software Labview and XPlane flight simulator. Flight tests are performed in a small fixed wing aircraft and make use of a limited version IFA<sup>2</sup>S, partially attending identified requirements. Results support the conclusion that IFA<sup>2</sup>S is capable of improving flight safety.