期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A novel planar vertical double-diffused metal-oxide-semiconductor field-effect transistor with inhomogeneous floating islands 被引量:1
1
作者 任敏 李泽宏 +3 位作者 刘小龙 谢加雄 邓光敏 张波 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期450-455,460+459,共6页
A novel planar vertical double-diffused metal-oxide-semiconductor (VDMOS) structure with an ultra-low specific on-resistance (Ron,sp), whose distinctive feature is the use of inhomogeneous floating p-islands in th... A novel planar vertical double-diffused metal-oxide-semiconductor (VDMOS) structure with an ultra-low specific on-resistance (Ron,sp), whose distinctive feature is the use of inhomogeneous floating p-islands in the n-drift region, is proposed. The theoretical limit of its Ron,sp is deduced, the influence of structure parameters on the breakdown voltage (BV) and Ron,sp are investigated, and the optimized results with BV of 83 V and Ron,sp of 54 mΩ.mm2 are obtained. Simulations show that the inhomogeneous-floating-islands metal-oxide-semiconductor field-effect transistor (MOSFET) has a superior "Ron,sp/BV" trade-off to the conventional VDMOS (a 38% reduction of Ron,sp with the same BV) and the homogeneous-floating-islands MOSFET (a 10% reduction of Ron,sp with the same BV). The inhomogeneous-floatingislands MOSFET also has a much better body-diode characteristic than the superjunction MOSFET. Its reverse recovery peak current, reverse recovery time and reverse recovery charge are about 50, 80 and 40% of those of the superjunction MOSFET, respectively. 展开更多
关键词 inhomogeneous floating islands specific on-state resistance breakdown voltage body diode reverse recovery
下载PDF
A Floating Island Treatment System for the Removal of Phosphorus from Surface Waters 被引量:4
2
作者 Mark T. Brown Treavor Boyer +3 位作者 R.J. Sindelar Sam Arden Amar Persaud Sherry Brandt-Williams 《Engineering》 2018年第5期597-609,共13页
The goal of this project was to design, build, and test a pilot-scale floating modular treatment system for total phosphorus (TP) removal from nutrient-impaired lakes in central Florida, USA. The treatment sys-tem c... The goal of this project was to design, build, and test a pilot-scale floating modular treatment system for total phosphorus (TP) removal from nutrient-impaired lakes in central Florida, USA. The treatment sys-tem consisted of biological and physical-chemical treatment modules. First, investigations of prospective biological and physical-chemical treatment processes in mesocosms and in bench-scale experiments were conducted. Thirteen different mesocosms were constructed with a variety of substrates and combi-nations of macrophytes and tested for TP and orthophosphate (PO4-^3) removal efficiencies and potential areal removal rates. Bench-scale jar tests and column tests of seven types of absorptive media in addition to three commercial resins were conducted in order to test absorptive capacity. Once isolated process testing was complete, a floating island treatment system (FITS) was designed and deployed for eight months in a lake in central Florida. Phosphorus removal efficiencies of the mesocosm systems averaged about 40%-50%, providing an average uptake of 5.0 g.m ^2.a ^1 across all mesocosms. The best-performing mesocosms were a submerged aquatic vegetation (SAV) mesocosm and an algae scrubber (AGS), which removed 20 and 50 mg.m ^2.d ^1, respectively, for an average removal of 5.5 and 12.0 g.m ^2.a ^1 for the SAV and AGS systems, Of the absorptive media, the best performance was alum residual (AR), which reduced PO4-^3 concentrations by about 75% after 5 min of contact time. Of the commercial resins tested, the PhosX resin was superior to the others, removing about 40% of phosphorus after 30 rain and 60% after 60min. Under baseline operation conditions during deployment, the FITS exhibited mean PO4-^3 removal efficiencies of 53%; using the 50th and 90th percentile of PO4-^3 removal during deployment, and the footprint of the FITS system, yielded efficiencies for the combined FITS system of 56% and 86%, respectively, and areal phosphorus removal rates between 8.9 and 16.5 g.m ^2.a ^1 展开更多
关键词 Phosphorus removal Lake ecosystem floating island treatment
下载PDF
Numerical investigation of flow with floating vegetation island 被引量:3
3
作者 Yi-dan Ai Meng-yang Liu Wen-xin Huai 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第1期31-43,共13页
Floating vegetation island(FVI)provides an effective way to remove excessive nutrition and pollutants in rivers.The Reynolds stress model(RSM)is employed to investigate the hydrodynamic characteristics induced by vari... Floating vegetation island(FVI)provides an effective way to remove excessive nutrition and pollutants in rivers.The Reynolds stress model(RSM)is employed to investigate the hydrodynamic characteristics induced by varied canopy densities of FVI in an open channel.In longitudinal direction,four regions are subdivided according to the flow development process:upstream adjustment region(LUD),diverging flow region(LDF),shear layer growth region(LSD),and flilly developed region.The increasing canopy density accelerates the flow adjustment in the diverging flow region and shear layer growth region,signaling a shorter distance to reach an equilibrium stage,while LUD keeps a constant.The vertical profiles of the normalized velocity are found to be self-similar downstream of the diverging flow region.In the vertical direction,the streamwise velocity profiles in the mixing layer collapse for all densities and obey the hyperbolic tangent law.Normalized penetration depth into the canopy was fitted as a function of dimensionless canopy density given by δc/hc=0.404(CDahc)^-0.316.This finding indicates a large space for rapid water renewal between the canopy region and the underlying water driven by the shear-scale vortices.In the lateral direction,the intensification of secondary current and the increasing number of secondary current cells with increasing canopy density reveal that dense floating canopies contribute to strong momentum exchange.The centers of vortices move as canopy density increases,while the vortices in canopy region do not merge with those in the gap region,as limited by the height and width of the canopy region.The distribution of longitudinal velocity in the transects is significantly influenced by secondary current. 展开更多
关键词 Reynolds stress model floating vegetation island flow adjustment mixing layer secondary current
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部