A novel planar vertical double-diffused metal-oxide-semiconductor (VDMOS) structure with an ultra-low specific on-resistance (Ron,sp), whose distinctive feature is the use of inhomogeneous floating p-islands in th...A novel planar vertical double-diffused metal-oxide-semiconductor (VDMOS) structure with an ultra-low specific on-resistance (Ron,sp), whose distinctive feature is the use of inhomogeneous floating p-islands in the n-drift region, is proposed. The theoretical limit of its Ron,sp is deduced, the influence of structure parameters on the breakdown voltage (BV) and Ron,sp are investigated, and the optimized results with BV of 83 V and Ron,sp of 54 mΩ.mm2 are obtained. Simulations show that the inhomogeneous-floating-islands metal-oxide-semiconductor field-effect transistor (MOSFET) has a superior "Ron,sp/BV" trade-off to the conventional VDMOS (a 38% reduction of Ron,sp with the same BV) and the homogeneous-floating-islands MOSFET (a 10% reduction of Ron,sp with the same BV). The inhomogeneous-floatingislands MOSFET also has a much better body-diode characteristic than the superjunction MOSFET. Its reverse recovery peak current, reverse recovery time and reverse recovery charge are about 50, 80 and 40% of those of the superjunction MOSFET, respectively.展开更多
The goal of this project was to design, build, and test a pilot-scale floating modular treatment system for total phosphorus (TP) removal from nutrient-impaired lakes in central Florida, USA. The treatment sys-tem c...The goal of this project was to design, build, and test a pilot-scale floating modular treatment system for total phosphorus (TP) removal from nutrient-impaired lakes in central Florida, USA. The treatment sys-tem consisted of biological and physical-chemical treatment modules. First, investigations of prospective biological and physical-chemical treatment processes in mesocosms and in bench-scale experiments were conducted. Thirteen different mesocosms were constructed with a variety of substrates and combi-nations of macrophytes and tested for TP and orthophosphate (PO4-^3) removal efficiencies and potential areal removal rates. Bench-scale jar tests and column tests of seven types of absorptive media in addition to three commercial resins were conducted in order to test absorptive capacity. Once isolated process testing was complete, a floating island treatment system (FITS) was designed and deployed for eight months in a lake in central Florida. Phosphorus removal efficiencies of the mesocosm systems averaged about 40%-50%, providing an average uptake of 5.0 g.m ^2.a ^1 across all mesocosms. The best-performing mesocosms were a submerged aquatic vegetation (SAV) mesocosm and an algae scrubber (AGS), which removed 20 and 50 mg.m ^2.d ^1, respectively, for an average removal of 5.5 and 12.0 g.m ^2.a ^1 for the SAV and AGS systems, Of the absorptive media, the best performance was alum residual (AR), which reduced PO4-^3 concentrations by about 75% after 5 min of contact time. Of the commercial resins tested, the PhosX resin was superior to the others, removing about 40% of phosphorus after 30 rain and 60% after 60min. Under baseline operation conditions during deployment, the FITS exhibited mean PO4-^3 removal efficiencies of 53%; using the 50th and 90th percentile of PO4-^3 removal during deployment, and the footprint of the FITS system, yielded efficiencies for the combined FITS system of 56% and 86%, respectively, and areal phosphorus removal rates between 8.9 and 16.5 g.m ^2.a ^1展开更多
Floating vegetation island(FVI)provides an effective way to remove excessive nutrition and pollutants in rivers.The Reynolds stress model(RSM)is employed to investigate the hydrodynamic characteristics induced by vari...Floating vegetation island(FVI)provides an effective way to remove excessive nutrition and pollutants in rivers.The Reynolds stress model(RSM)is employed to investigate the hydrodynamic characteristics induced by varied canopy densities of FVI in an open channel.In longitudinal direction,four regions are subdivided according to the flow development process:upstream adjustment region(LUD),diverging flow region(LDF),shear layer growth region(LSD),and flilly developed region.The increasing canopy density accelerates the flow adjustment in the diverging flow region and shear layer growth region,signaling a shorter distance to reach an equilibrium stage,while LUD keeps a constant.The vertical profiles of the normalized velocity are found to be self-similar downstream of the diverging flow region.In the vertical direction,the streamwise velocity profiles in the mixing layer collapse for all densities and obey the hyperbolic tangent law.Normalized penetration depth into the canopy was fitted as a function of dimensionless canopy density given by δc/hc=0.404(CDahc)^-0.316.This finding indicates a large space for rapid water renewal between the canopy region and the underlying water driven by the shear-scale vortices.In the lateral direction,the intensification of secondary current and the increasing number of secondary current cells with increasing canopy density reveal that dense floating canopies contribute to strong momentum exchange.The centers of vortices move as canopy density increases,while the vortices in canopy region do not merge with those in the gap region,as limited by the height and width of the canopy region.The distribution of longitudinal velocity in the transects is significantly influenced by secondary current.展开更多
基金Project supported by the National Key Scientific and Technological Project (Grant No. 2011ZX02503-005)the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2010J038)
文摘A novel planar vertical double-diffused metal-oxide-semiconductor (VDMOS) structure with an ultra-low specific on-resistance (Ron,sp), whose distinctive feature is the use of inhomogeneous floating p-islands in the n-drift region, is proposed. The theoretical limit of its Ron,sp is deduced, the influence of structure parameters on the breakdown voltage (BV) and Ron,sp are investigated, and the optimized results with BV of 83 V and Ron,sp of 54 mΩ.mm2 are obtained. Simulations show that the inhomogeneous-floating-islands metal-oxide-semiconductor field-effect transistor (MOSFET) has a superior "Ron,sp/BV" trade-off to the conventional VDMOS (a 38% reduction of Ron,sp with the same BV) and the homogeneous-floating-islands MOSFET (a 10% reduction of Ron,sp with the same BV). The inhomogeneous-floatingislands MOSFET also has a much better body-diode characteristic than the superjunction MOSFET. Its reverse recovery peak current, reverse recovery time and reverse recovery charge are about 50, 80 and 40% of those of the superjunction MOSFET, respectively.
基金the Lake Jesup Total Phosphorus Removal Treatment Technologies Floating Island Pilot Project (25104) of St. Johns River Water Management District Palatka+1 种基金 FL USA
文摘The goal of this project was to design, build, and test a pilot-scale floating modular treatment system for total phosphorus (TP) removal from nutrient-impaired lakes in central Florida, USA. The treatment sys-tem consisted of biological and physical-chemical treatment modules. First, investigations of prospective biological and physical-chemical treatment processes in mesocosms and in bench-scale experiments were conducted. Thirteen different mesocosms were constructed with a variety of substrates and combi-nations of macrophytes and tested for TP and orthophosphate (PO4-^3) removal efficiencies and potential areal removal rates. Bench-scale jar tests and column tests of seven types of absorptive media in addition to three commercial resins were conducted in order to test absorptive capacity. Once isolated process testing was complete, a floating island treatment system (FITS) was designed and deployed for eight months in a lake in central Florida. Phosphorus removal efficiencies of the mesocosm systems averaged about 40%-50%, providing an average uptake of 5.0 g.m ^2.a ^1 across all mesocosms. The best-performing mesocosms were a submerged aquatic vegetation (SAV) mesocosm and an algae scrubber (AGS), which removed 20 and 50 mg.m ^2.d ^1, respectively, for an average removal of 5.5 and 12.0 g.m ^2.a ^1 for the SAV and AGS systems, Of the absorptive media, the best performance was alum residual (AR), which reduced PO4-^3 concentrations by about 75% after 5 min of contact time. Of the commercial resins tested, the PhosX resin was superior to the others, removing about 40% of phosphorus after 30 rain and 60% after 60min. Under baseline operation conditions during deployment, the FITS exhibited mean PO4-^3 removal efficiencies of 53%; using the 50th and 90th percentile of PO4-^3 removal during deployment, and the footprint of the FITS system, yielded efficiencies for the combined FITS system of 56% and 86%, respectively, and areal phosphorus removal rates between 8.9 and 16.5 g.m ^2.a ^1
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11872285,11672213).
文摘Floating vegetation island(FVI)provides an effective way to remove excessive nutrition and pollutants in rivers.The Reynolds stress model(RSM)is employed to investigate the hydrodynamic characteristics induced by varied canopy densities of FVI in an open channel.In longitudinal direction,four regions are subdivided according to the flow development process:upstream adjustment region(LUD),diverging flow region(LDF),shear layer growth region(LSD),and flilly developed region.The increasing canopy density accelerates the flow adjustment in the diverging flow region and shear layer growth region,signaling a shorter distance to reach an equilibrium stage,while LUD keeps a constant.The vertical profiles of the normalized velocity are found to be self-similar downstream of the diverging flow region.In the vertical direction,the streamwise velocity profiles in the mixing layer collapse for all densities and obey the hyperbolic tangent law.Normalized penetration depth into the canopy was fitted as a function of dimensionless canopy density given by δc/hc=0.404(CDahc)^-0.316.This finding indicates a large space for rapid water renewal between the canopy region and the underlying water driven by the shear-scale vortices.In the lateral direction,the intensification of secondary current and the increasing number of secondary current cells with increasing canopy density reveal that dense floating canopies contribute to strong momentum exchange.The centers of vortices move as canopy density increases,while the vortices in canopy region do not merge with those in the gap region,as limited by the height and width of the canopy region.The distribution of longitudinal velocity in the transects is significantly influenced by secondary current.