Background,aim,and scope In the context of climate change,extreme precipitation and resulting flooding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters...Background,aim,and scope In the context of climate change,extreme precipitation and resulting flooding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters due to their wide observation range,periodic revisit capabilities,and continuous spatial coverage.These tools enable real-time and quantitative assessment of flood inundation.Over the past 20 years,the field of remote sensing for floods has seen significant advancements.Understanding the evolution of research hotspots within this field can offer valuable insights for future research directions.Materials and methods This study systematically analyzes the development and hotspot evolution in the field of flood remote sensing,both domestically and internationally during 2000—2021.Data from CNKI(China National Knowledge Infrastructure)and WOS(Web of Science)databases are utilized for this analysis.Results(1)A total of 1693 articles have been published in this field,showing a stable growth trend post-2008.Significant contributors include the Chinese Academy of Sciences,Beijing Normal University,Wuhan University,the Italian National Research Council,and National Aeronautics and Space Administration.(2)High-frequency keywords from 2000 to 2021 include“remote sensing”“flood”“model”“classification”“GIS”“climate change”“area”,and“MODIS”.(3)The most prominent keywords were“GIS”(8.65),“surface water”(7.16),“remote sensing”(7.07),“machine learning”(6.52),and“sentinel-2”(5.86).(4)Thirteen cluster labels were identified through clustering,divided into three phases:2000—2009(initial exploratory stage),2010—2014(period of rapid development),and 2015—2021(steady development of remote sensing for floods and related disasters).Discussion The field exhibits strong phase-based development,with research focuses shifting over time.From 2000 to 2009,emphasis was on remote sensing image application and flood model development.From 2010 to 2014,the focus shifted to accurate interpretation of remote sensing images,multispectral image applications,and long time series detection.From 2015 to 2021,research concentrated on steady development,leveraging large datasets and advanced data processing techniques,including improvements in water body indices,big data fusion,deep learning,and drone monitoring.Early on,SAR data,known for its all-weather capability,was crucial for rapid flood hazard extraction and flood hydrological models.With the rise of high-quality optical satellites,optical remote sensing has become more prevalent,though algorithm accuracy and efficiency for water body index methods still require improvement.Conclusions Data sources and methodologies have evolved from early reliance on radar data to the current exploration of optical image fusion and multi-source data integration.Algorithms now increasingly employ deep learning,super image elements,and object-oriented methods to enhance flood identification accuracy.Recent studies focus on spatial and temporal changes in flooding,risk identification,and early warning for climate change-related flooding,including glacial melting and lake outbursts.Recommendations and perspectives To enhance monitoring accuracy and timeliness,UAV technology should be further utilized.Strengthening multi-source data fusion and assimilation is crucial,as is analyzing long-term flood disaster sequences to better understand their mechanisms.展开更多
The primary objective of this paper was to identify flood-prone areas in Southeast of Louisiana to help decision-makers to develop appropriate adaptation strategies and flood prediction, and mitigation of the effects ...The primary objective of this paper was to identify flood-prone areas in Southeast of Louisiana to help decision-makers to develop appropriate adaptation strategies and flood prediction, and mitigation of the effects on the community. In doing so, the paper uses satellite remote sensing and Geographic Information System (GIS) data for this purpose. Elevation data was obtained from the National Elevation Dataset (NED) produced by the United States Geological Survey (USGS) seamless data warehouse. Satellite data was also acquired from USGS Earth explorer website. Topographical information on runoff characteristics such as slope, aspect and the digital elevation model was generated. Grid interpolation TIN (triangulated irregular network) was carried from the digital elevation model (DEM) to create slope map. Image Drape was performed using ERDAS IMAGINE Virtual GIS. The output image was then draped over the NED elevation data for visualization purposes with vertical exaggeration of 16 feet. Results of the study revealed that majority of the study area lies in low-lying and very low-lying terrain below sea level. Policy recommendation in the form of the need to design and build a comprehensive Regional Information Systems (RIS) in the form of periodic inventorying, monitoring and evaluation with full support of the governments was made for the study area.展开更多
Southern Red Sea flooding is common. Assessing flood-prone development risks helps decrease life and property threats. It tries to improve flood awareness and advocate property owner steps to lessen risk. DEMs and top...Southern Red Sea flooding is common. Assessing flood-prone development risks helps decrease life and property threats. It tries to improve flood awareness and advocate property owner steps to lessen risk. DEMs and topography data were analyzed by RS and GIS. Fifth-through seventh-order rivers were studied. Morphometric analysis assessed the area’s flash flood danger. NEOM has 14 catchments. We determined each catchment’s area, perimeter, maximum length, total stream length, minimum and maximum elevations. It also uses remote sensing. It classifies Landsat 8 photos for land use and cover maps. Image categorization involves high-quality Landsat satellite images and secondary data, plus user experience and knowledge. This study used the wetness index, elevation, slope, stream power index, topographic roughness index, normalized difference vegetation index, sediment transport index, stream order, flow accumulation, and geological formation. Analytic hierarchy considered all earlier criteria (AHP). The geometric consistency index GCI (0.15) and the consistency ratio CR (4.3%) are calculated. The study showed five degrees of flooding risk for Wadi Zawhi and four for Wadi Surr, from very high to very low. 9.16% of Wadi Surr is vulnerable to very high flooding, 50% to high flooding, 40% to low flooding, and 0.3% to very low flooding. Wadi Zawhi’s flood risk is 0.23% high, moderate, low, or extremely low. They’re in Wadi Surr and Wadi Zawhi. Flood mapping helps prepare for emergencies. Flood-prone areas should prioritize resilience.展开更多
Summer floods occur frequently in many regions of China,affecting economic development and social stability.Remote sensing is a new technique in disaster monitoring.In this study,the Sihu Basin in Hubei Province of Ch...Summer floods occur frequently in many regions of China,affecting economic development and social stability.Remote sensing is a new technique in disaster monitoring.In this study,the Sihu Basin in Hubei Province of China and the Huaibei Plain in Anhui Province of China were selected as the study areas.Thresholds of backscattering coefficients in the decision tree method were calculated with the histogram analysis method,and flood disaster monitoring in the two study areas was conducted with the threshold method using Sentinel-1 satellite images.Through satellite-based flood disaster monitoring,the flooded maps and the areas of expanded water bodies and flooded crops were derived.The satellite-based monitoring maps were derived by comparing the expanded area of images during a flood disaster with that before the disaster.The difference in spatiotemporal distribution of flood disasters in these two regions was analyzed.The results showed that flood disasters in the Sihu Basin occurred frequently in June and July,and flood disasters in the Huaibei Plain mostly occurred in August,with a high interannual vari-ability.Flood disasters in the Sihu Basin were usually widespread,and the affected area was between Changhu and Honghu lakes.The Huaibei Plain was affected by scattered disasters.The annual mean percentages of flooded crop area were 14.91%and 3.74% in the Sihu Basin and Huaibei Plain,respectively.The accuracies of the extracted flooded area in the Sihu Basin in 2016 and 2017 were 96.20% and 95.19%,respectively.展开更多
Accurate crop-specific damage assessment immediately after flood events is crucial for grain pricing,food policy,and agricultural trade.The main goal of this research is to estimate the crop-specific damage that occur...Accurate crop-specific damage assessment immediately after flood events is crucial for grain pricing,food policy,and agricultural trade.The main goal of this research is to estimate the crop-specific damage that occurs immediately after flood events by using a newly developed Disaster Vegetation Damage Index(DVDI).By incorporating the DVDI along with information on crop types and flood inundation extents,this research assessed crop damage for three case-study events:Iowa Severe Storms and Flooding(DR 4386),Nebraska Severe Storms and Flooding(DR 4387),and Texas Severe Storms and Flooding(DR 4272).Crop damage is assessed on a qualitative scale and reported at the county level for the selected flood cases in Iowa,Nebraska,and Texas.More than half of flooded corn has experienced no damage,whereas 60%of affected soybean has a higher degree of loss in most of the selected counties in Iowa.Similarly,a total of 350 ha of soybean has moderate to severe damage whereas corn has a negligible impact in Cuming,which is the most affected county in Nebraska.A total of 454 ha of corn are severely damaged in Anderson County,Texas.More than 200 ha of alfalfa have moderate to severe damage in Navarro County,Texas.The results of damage assessment are validated through the NDVI profile and yield loss in percentage.A linear relation is found between DVDI values and crop yield loss.An R2 value of 0.54 indicates the potentiality of DVDI for rapid crop damage estimation.The results also indicate the association between DVDI class and crop yield loss.展开更多
Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free a...Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas.展开更多
文摘Background,aim,and scope In the context of climate change,extreme precipitation and resulting flooding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters due to their wide observation range,periodic revisit capabilities,and continuous spatial coverage.These tools enable real-time and quantitative assessment of flood inundation.Over the past 20 years,the field of remote sensing for floods has seen significant advancements.Understanding the evolution of research hotspots within this field can offer valuable insights for future research directions.Materials and methods This study systematically analyzes the development and hotspot evolution in the field of flood remote sensing,both domestically and internationally during 2000—2021.Data from CNKI(China National Knowledge Infrastructure)and WOS(Web of Science)databases are utilized for this analysis.Results(1)A total of 1693 articles have been published in this field,showing a stable growth trend post-2008.Significant contributors include the Chinese Academy of Sciences,Beijing Normal University,Wuhan University,the Italian National Research Council,and National Aeronautics and Space Administration.(2)High-frequency keywords from 2000 to 2021 include“remote sensing”“flood”“model”“classification”“GIS”“climate change”“area”,and“MODIS”.(3)The most prominent keywords were“GIS”(8.65),“surface water”(7.16),“remote sensing”(7.07),“machine learning”(6.52),and“sentinel-2”(5.86).(4)Thirteen cluster labels were identified through clustering,divided into three phases:2000—2009(initial exploratory stage),2010—2014(period of rapid development),and 2015—2021(steady development of remote sensing for floods and related disasters).Discussion The field exhibits strong phase-based development,with research focuses shifting over time.From 2000 to 2009,emphasis was on remote sensing image application and flood model development.From 2010 to 2014,the focus shifted to accurate interpretation of remote sensing images,multispectral image applications,and long time series detection.From 2015 to 2021,research concentrated on steady development,leveraging large datasets and advanced data processing techniques,including improvements in water body indices,big data fusion,deep learning,and drone monitoring.Early on,SAR data,known for its all-weather capability,was crucial for rapid flood hazard extraction and flood hydrological models.With the rise of high-quality optical satellites,optical remote sensing has become more prevalent,though algorithm accuracy and efficiency for water body index methods still require improvement.Conclusions Data sources and methodologies have evolved from early reliance on radar data to the current exploration of optical image fusion and multi-source data integration.Algorithms now increasingly employ deep learning,super image elements,and object-oriented methods to enhance flood identification accuracy.Recent studies focus on spatial and temporal changes in flooding,risk identification,and early warning for climate change-related flooding,including glacial melting and lake outbursts.Recommendations and perspectives To enhance monitoring accuracy and timeliness,UAV technology should be further utilized.Strengthening multi-source data fusion and assimilation is crucial,as is analyzing long-term flood disaster sequences to better understand their mechanisms.
文摘The primary objective of this paper was to identify flood-prone areas in Southeast of Louisiana to help decision-makers to develop appropriate adaptation strategies and flood prediction, and mitigation of the effects on the community. In doing so, the paper uses satellite remote sensing and Geographic Information System (GIS) data for this purpose. Elevation data was obtained from the National Elevation Dataset (NED) produced by the United States Geological Survey (USGS) seamless data warehouse. Satellite data was also acquired from USGS Earth explorer website. Topographical information on runoff characteristics such as slope, aspect and the digital elevation model was generated. Grid interpolation TIN (triangulated irregular network) was carried from the digital elevation model (DEM) to create slope map. Image Drape was performed using ERDAS IMAGINE Virtual GIS. The output image was then draped over the NED elevation data for visualization purposes with vertical exaggeration of 16 feet. Results of the study revealed that majority of the study area lies in low-lying and very low-lying terrain below sea level. Policy recommendation in the form of the need to design and build a comprehensive Regional Information Systems (RIS) in the form of periodic inventorying, monitoring and evaluation with full support of the governments was made for the study area.
文摘Southern Red Sea flooding is common. Assessing flood-prone development risks helps decrease life and property threats. It tries to improve flood awareness and advocate property owner steps to lessen risk. DEMs and topography data were analyzed by RS and GIS. Fifth-through seventh-order rivers were studied. Morphometric analysis assessed the area’s flash flood danger. NEOM has 14 catchments. We determined each catchment’s area, perimeter, maximum length, total stream length, minimum and maximum elevations. It also uses remote sensing. It classifies Landsat 8 photos for land use and cover maps. Image categorization involves high-quality Landsat satellite images and secondary data, plus user experience and knowledge. This study used the wetness index, elevation, slope, stream power index, topographic roughness index, normalized difference vegetation index, sediment transport index, stream order, flow accumulation, and geological formation. Analytic hierarchy considered all earlier criteria (AHP). The geometric consistency index GCI (0.15) and the consistency ratio CR (4.3%) are calculated. The study showed five degrees of flooding risk for Wadi Zawhi and four for Wadi Surr, from very high to very low. 9.16% of Wadi Surr is vulnerable to very high flooding, 50% to high flooding, 40% to low flooding, and 0.3% to very low flooding. Wadi Zawhi’s flood risk is 0.23% high, moderate, low, or extremely low. They’re in Wadi Surr and Wadi Zawhi. Flood mapping helps prepare for emergencies. Flood-prone areas should prioritize resilience.
基金This work was supported by the National Key Research and Development Program of China(Grants No.2018YFC1508302 and 2018YFC1508301)the Natural Science Foundation of Hubei Province of China(Grant No.2019CFB507).
文摘Summer floods occur frequently in many regions of China,affecting economic development and social stability.Remote sensing is a new technique in disaster monitoring.In this study,the Sihu Basin in Hubei Province of China and the Huaibei Plain in Anhui Province of China were selected as the study areas.Thresholds of backscattering coefficients in the decision tree method were calculated with the histogram analysis method,and flood disaster monitoring in the two study areas was conducted with the threshold method using Sentinel-1 satellite images.Through satellite-based flood disaster monitoring,the flooded maps and the areas of expanded water bodies and flooded crops were derived.The satellite-based monitoring maps were derived by comparing the expanded area of images during a flood disaster with that before the disaster.The difference in spatiotemporal distribution of flood disasters in these two regions was analyzed.The results showed that flood disasters in the Sihu Basin occurred frequently in June and July,and flood disasters in the Huaibei Plain mostly occurred in August,with a high interannual vari-ability.Flood disasters in the Sihu Basin were usually widespread,and the affected area was between Changhu and Honghu lakes.The Huaibei Plain was affected by scattered disasters.The annual mean percentages of flooded crop area were 14.91%and 3.74% in the Sihu Basin and Huaibei Plain,respectively.The accuracies of the extracted flooded area in the Sihu Basin in 2016 and 2017 were 96.20% and 95.19%,respectively.
基金funded by grants from NASA Applied Science Program(Grant#NNX14AP91G,PI:Prof.Liping Di)NSF INFEWS program(Grant#CNS-1739705,PI:Prof.Liping Di)
文摘Accurate crop-specific damage assessment immediately after flood events is crucial for grain pricing,food policy,and agricultural trade.The main goal of this research is to estimate the crop-specific damage that occurs immediately after flood events by using a newly developed Disaster Vegetation Damage Index(DVDI).By incorporating the DVDI along with information on crop types and flood inundation extents,this research assessed crop damage for three case-study events:Iowa Severe Storms and Flooding(DR 4386),Nebraska Severe Storms and Flooding(DR 4387),and Texas Severe Storms and Flooding(DR 4272).Crop damage is assessed on a qualitative scale and reported at the county level for the selected flood cases in Iowa,Nebraska,and Texas.More than half of flooded corn has experienced no damage,whereas 60%of affected soybean has a higher degree of loss in most of the selected counties in Iowa.Similarly,a total of 350 ha of soybean has moderate to severe damage whereas corn has a negligible impact in Cuming,which is the most affected county in Nebraska.A total of 454 ha of corn are severely damaged in Anderson County,Texas.More than 200 ha of alfalfa have moderate to severe damage in Navarro County,Texas.The results of damage assessment are validated through the NDVI profile and yield loss in percentage.A linear relation is found between DVDI values and crop yield loss.An R2 value of 0.54 indicates the potentiality of DVDI for rapid crop damage estimation.The results also indicate the association between DVDI class and crop yield loss.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402003)the CAS Earth Big Data Science Project(No.XDA19060303)the Innovation Project of the State Key Laboratory of Resources and Environmental Information System(No.O88RAA01YA)
文摘Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas.