Fibrous-type flters are used to capture dust particles in mining and other occupations where personnel are exposed for prolonged periods.Dust cleansing devices including fooded-bed dust scrubbers use these mesh-type m...Fibrous-type flters are used to capture dust particles in mining and other occupations where personnel are exposed for prolonged periods.Dust cleansing devices including fooded-bed dust scrubbers use these mesh-type multi-layered flters.These flters trap dust particles efciently on their surface and inside their mesh.However,their continued operation leads to dust build-up and clogging.This results in increased resistance of the flter and lowered airfow rate through the scrubber.This could potentially enhance the exposure of the miners.A non-clogging self-cleaning impingement screen type dust flter was designed by the authors for use in mining and industrial dust cleansing applications.The flter guides dirt-laden air through rapidly turning paths which forces it to shed heavier particles.The particles impact one of the impermeable solid metallic flter surfaces and are removed from the airstream.A full cone water spray installed upstream prevents any surface buildup of dust.This paper summaried the computer models generated to show the flter operations and laboratory experiments including optical particle counting to establish the cleaning efciency.展开更多
This work proposes a vibrating mesh screen as an alternative to the static mesh screen currently used in conventional flooded-bed dust scrubbers for removing airborne coal mine dust in the continuous mining environmen...This work proposes a vibrating mesh screen as an alternative to the static mesh screen currently used in conventional flooded-bed dust scrubbers for removing airborne coal mine dust in the continuous mining environment.Fundamental assessments suggest that a vibrating screen may improve the dust collection efficiency of scrubber systems and mitigate the clogging issues associated with the conventional design.To evaluate this hypothesis,computational fluid dynamics(CFD)simulations were carried out to assess the effects of vibration conditions(i.e.,frequency and amplitude)on the dust particle-mesh interaction and mesh wetting conditions,which are the two decisive factors in determining the dust collection efficiency.The results suggest that the vibrating mesh screen can enhance dust particle collision opportunities on the mesh and increase mesh wetted area as compared to the static mesh screen.The effects of mesh screen aperture,coal dust concentration,and spray nozzle flow rate on the performance of the vibrating mesh are also evaluated.Finally,a simplified three-phase flow simulation including airflow,dust particles,and water droplet spray is performed,and the results reflect a significant improvement of dust collection efficiency in the liquid-coated vibrating mesh screen.展开更多
基金Funding The authors acknowledge the National Institute for Occupational Safety and Health(NIOSH)for funding this research project.
文摘Fibrous-type flters are used to capture dust particles in mining and other occupations where personnel are exposed for prolonged periods.Dust cleansing devices including fooded-bed dust scrubbers use these mesh-type multi-layered flters.These flters trap dust particles efciently on their surface and inside their mesh.However,their continued operation leads to dust build-up and clogging.This results in increased resistance of the flter and lowered airfow rate through the scrubber.This could potentially enhance the exposure of the miners.A non-clogging self-cleaning impingement screen type dust flter was designed by the authors for use in mining and industrial dust cleansing applications.The flter guides dirt-laden air through rapidly turning paths which forces it to shed heavier particles.The particles impact one of the impermeable solid metallic flter surfaces and are removed from the airstream.A full cone water spray installed upstream prevents any surface buildup of dust.This paper summaried the computer models generated to show the flter operations and laboratory experiments including optical particle counting to establish the cleaning efciency.
基金sponsored by the Alpha Foundation for the Improvement of Mine Safety and Health, Inc. (Alpha Foundation)
文摘This work proposes a vibrating mesh screen as an alternative to the static mesh screen currently used in conventional flooded-bed dust scrubbers for removing airborne coal mine dust in the continuous mining environment.Fundamental assessments suggest that a vibrating screen may improve the dust collection efficiency of scrubber systems and mitigate the clogging issues associated with the conventional design.To evaluate this hypothesis,computational fluid dynamics(CFD)simulations were carried out to assess the effects of vibration conditions(i.e.,frequency and amplitude)on the dust particle-mesh interaction and mesh wetting conditions,which are the two decisive factors in determining the dust collection efficiency.The results suggest that the vibrating mesh screen can enhance dust particle collision opportunities on the mesh and increase mesh wetted area as compared to the static mesh screen.The effects of mesh screen aperture,coal dust concentration,and spray nozzle flow rate on the performance of the vibrating mesh are also evaluated.Finally,a simplified three-phase flow simulation including airflow,dust particles,and water droplet spray is performed,and the results reflect a significant improvement of dust collection efficiency in the liquid-coated vibrating mesh screen.