The floor field model has been widely used in evacuation simulation research based on cellular automata model. However, conventional methods of setting floor field will lead to highly insufficient utilization of the e...The floor field model has been widely used in evacuation simulation research based on cellular automata model. However, conventional methods of setting floor field will lead to highly insufficient utilization of the exit area when people gather on one side of the exit. In this study, an extended cellular automata model with modified floor field is proposed to solve this problem. Additionally, a congestion judgment mechanism is integrated in our model, whereby people can synthetically judge the degree of congestion and distance in front of them to determine whether they need to change another exit to evacuate or not. We contrasted the simulation results of the conventional floor field model, the extended model proposed in this paper, and Pathfinder software in a same scenario. It is demonstrated that this extended model can ameliorate the problem of insufficient utilization of the exit area and the trajectory of pedestrian movement and the crowd shape of pedestrians in front of exit in this new model are more realistic than those of the other two models. The findings have implications for modeling pedestrian evacuation.展开更多
Walking in groups is very common in a realistic walking environment. An extended floor field cellular automaton (CA) model is therefore proposed to describe the walking behavior of pedestrian groups, This model repr...Walking in groups is very common in a realistic walking environment. An extended floor field cellular automaton (CA) model is therefore proposed to describe the walking behavior of pedestrian groups, This model represents the motion of pedestrian groups in a realistic way. The simulation results reveal that the walking behavior of groups has an important but negative influence on pedestrian flow dynamics, especially when the density is at a high level. The presence of pedestrian groups retards the emergence of lane formation and increases the instability of operation of pedestrian flow. Moreover, the average velocity and volume of pedestrian flow are significantly reduced due to the group motion. Meanwhile, the parameter-sensitive analysis suggests that pedestrian groups should make a compromise between efficient movement and staying coherent with a certain spatial structure when walking in a dense crowd.展开更多
To investigate the evacuation behaviors of pedestrians considering the action of guards and to develop an effective evacuation strategy in an artificial attack, an extended floor field model is proposed. In this model...To investigate the evacuation behaviors of pedestrians considering the action of guards and to develop an effective evacuation strategy in an artificial attack, an extended floor field model is proposed. In this model, the artificial attacker's assault on pedestrians, the death of pedestrians, and the guard's capture are involved simultaneously. An alternative evacuation strategy which can largely reduce the number of casualties is developed and the effects of several key parameters such as the deterrence radius and capture distance on evacuation dynamics are studied. The results show that congestion near the exit has dual effects. More specifically, the guard can catch all attackers in a short time because the artificial attackers have a more concentrated distribution, but more casualties can occur because it is hard for pedestrians to escape the assault due to congestion. In contrast, when pedestrians have more preference of approaching the guard, although the guard will take more time to capture the attackers resulting from the dispersion of the attackers, the death toll will decrease. One of the reasons is the dispersal of the crowd, and the decrease in congestion is beneficial for escape. The other is that the attackers will be caught before launching the attack on the people who are around the guard, in other words, the guard protects a large number of pedestrians from being killed. Moreover, increasing capture distance of the guard can effectively reduce the casualties and the catch time. As the deterrence radius reflecting the tendency of escaping from the guard for attackers rises, it becomes more difficult for the guard to catch the attackers and more casualties are caused. However, when the deterrence radius reaches a certain level, the number of deaths is reduced because the attackers prefer to stay as far away as possible from the guard rather than occupy a position where they could assault more people.展开更多
基金Project supported by the Sichuan Youth Science and Technology Innovation Research Team Project,China(Grant No.2019JDTD0017)the National Natural Science Foundation of China(Grant No.41702340)the National Science and Technology Major Project of China(Grant No.2017ZX05013001-002).
文摘The floor field model has been widely used in evacuation simulation research based on cellular automata model. However, conventional methods of setting floor field will lead to highly insufficient utilization of the exit area when people gather on one side of the exit. In this study, an extended cellular automata model with modified floor field is proposed to solve this problem. Additionally, a congestion judgment mechanism is integrated in our model, whereby people can synthetically judge the degree of congestion and distance in front of them to determine whether they need to change another exit to evacuate or not. We contrasted the simulation results of the conventional floor field model, the extended model proposed in this paper, and Pathfinder software in a same scenario. It is demonstrated that this extended model can ameliorate the problem of insufficient utilization of the exit area and the trajectory of pedestrian movement and the crowd shape of pedestrians in front of exit in this new model are more realistic than those of the other two models. The findings have implications for modeling pedestrian evacuation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51278101 and 51338003)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20120092110043)the Scientific Innovation Research Project of College Graduate in Jiangsu Province,China(Grant No.CXZZ13 0117)
文摘Walking in groups is very common in a realistic walking environment. An extended floor field cellular automaton (CA) model is therefore proposed to describe the walking behavior of pedestrian groups, This model represents the motion of pedestrian groups in a realistic way. The simulation results reveal that the walking behavior of groups has an important but negative influence on pedestrian flow dynamics, especially when the density is at a high level. The presence of pedestrian groups retards the emergence of lane formation and increases the instability of operation of pedestrian flow. Moreover, the average velocity and volume of pedestrian flow are significantly reduced due to the group motion. Meanwhile, the parameter-sensitive analysis suggests that pedestrian groups should make a compromise between efficient movement and staying coherent with a certain spatial structure when walking in a dense crowd.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFC0804900)the National Natural Science Foundation of China(Grant Nos.71790613 and 51534008)
文摘To investigate the evacuation behaviors of pedestrians considering the action of guards and to develop an effective evacuation strategy in an artificial attack, an extended floor field model is proposed. In this model, the artificial attacker's assault on pedestrians, the death of pedestrians, and the guard's capture are involved simultaneously. An alternative evacuation strategy which can largely reduce the number of casualties is developed and the effects of several key parameters such as the deterrence radius and capture distance on evacuation dynamics are studied. The results show that congestion near the exit has dual effects. More specifically, the guard can catch all attackers in a short time because the artificial attackers have a more concentrated distribution, but more casualties can occur because it is hard for pedestrians to escape the assault due to congestion. In contrast, when pedestrians have more preference of approaching the guard, although the guard will take more time to capture the attackers resulting from the dispersion of the attackers, the death toll will decrease. One of the reasons is the dispersal of the crowd, and the decrease in congestion is beneficial for escape. The other is that the attackers will be caught before launching the attack on the people who are around the guard, in other words, the guard protects a large number of pedestrians from being killed. Moreover, increasing capture distance of the guard can effectively reduce the casualties and the catch time. As the deterrence radius reflecting the tendency of escaping from the guard for attackers rises, it becomes more difficult for the guard to catch the attackers and more casualties are caused. However, when the deterrence radius reaches a certain level, the number of deaths is reduced because the attackers prefer to stay as far away as possible from the guard rather than occupy a position where they could assault more people.