We propose an approach based on Floquet theorem combined with the resonating averages method (RAM), to solve the time-dependent Schrödinger equation with a time-periodic Hamiltonian. This approach provides an...We propose an approach based on Floquet theorem combined with the resonating averages method (RAM), to solve the time-dependent Schrödinger equation with a time-periodic Hamiltonian. This approach provides an alternative way to determine directly the evolution operator, and then we deduct the wave functions and the corresponding quasi-energies, of quantum systems. An application is operated for the driven cubic or/and quatric anharmonic as well as for the Morse potential. Comparisons of our results with those of other authors are discussed, and numerical evaluations are performed, to determine the dissociation energy of (HCl) and (CO) molecules.展开更多
The influence of parameters such as the strength and frequency of a periodic driving force on the tunneling dynamics is investigated in a symmetric triple-well potential. It is shown that for some special values of th...The influence of parameters such as the strength and frequency of a periodic driving force on the tunneling dynamics is investigated in a symmetric triple-well potential. It is shown that for some special values of the parameters, tunneling could be enhanced considerably or suppressed completely. Quantum fluctuation during the tunneling is discussed as well and the numerical results are presented and analysed by virtue of Floquet formalism.展开更多
文摘We propose an approach based on Floquet theorem combined with the resonating averages method (RAM), to solve the time-dependent Schrödinger equation with a time-periodic Hamiltonian. This approach provides an alternative way to determine directly the evolution operator, and then we deduct the wave functions and the corresponding quasi-energies, of quantum systems. An application is operated for the driven cubic or/and quatric anharmonic as well as for the Morse potential. Comparisons of our results with those of other authors are discussed, and numerical evaluations are performed, to determine the dissociation energy of (HCl) and (CO) molecules.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10974137 and 10775100)
文摘The influence of parameters such as the strength and frequency of a periodic driving force on the tunneling dynamics is investigated in a symmetric triple-well potential. It is shown that for some special values of the parameters, tunneling could be enhanced considerably or suppressed completely. Quantum fluctuation during the tunneling is discussed as well and the numerical results are presented and analysed by virtue of Floquet formalism.