文摘基于协方差驱动随机子空间识别(covariance-driven stochastic subspace identification,SSI-COV)方法的模态参数识别具有强鲁棒性、高精度的优势,在结构工作模态分析中应用广泛。为保证模态参数识别的准确性,新近提出的基于随机子空间(stochastic subspace identification,SSI)的模态参数不确定性量化方法,可有效估计模态参数的方差,但由于其计算各中间变量时,需显式表示出Jacobian矩阵,导致矩阵运算维度高、计算效率低。为此,提出一种基于SSI-COV的模态参数不确定度高效计算方法。首先,计算振动响应相关函数的方差,通过奇异值分解(singular value decomposition,SVD),选取合适的奇异值截断阶数,由每阶奇异向量组装出多组Hankel矩阵的扰动。其次,根据一阶矩阵摄动理论,隐式计算SSI-COV算法各中间变量的一阶扰动,最终,由多组模态参数的扰动叠加计算出方差。最后,以桁架结构模型为例,采用所提方法辨识结构模态参数并计算模态参数方差,分析了Hankel矩阵维度及相关函数奇异值截断阶数对辨识结果的影响,结果表明计算得到的模态参数方差与蒙特卡洛仿真(Monte Carlo simulation,MCS)结果非常接近,且模态参数不确定度可作为剔除虚假模态的有效依据。