The Influence of pulp pH, dispersants and auxiliary collectors on reverse flotation of carbonate-containing iron ores were explored. Interactions between iron ores and quartz were theoretically analyzed by flotation s...The Influence of pulp pH, dispersants and auxiliary collectors on reverse flotation of carbonate-containing iron ores were explored. Interactions between iron ores and quartz were theoretically analyzed by flotation solution chemistry and DLVO theory. The results indicated that the iron concentrate grade improved sharply when pH increased from 11.0 to 12.0, but changed unobviously when pH was larger than 12.0, which was related to solution chemistry of siderite and interactions among particles. Sodium tripolyphosphate was an effective dispersant and sodium dodecyl sulfate was an effective auxiliary collector of KS-III. Both recovery and grade enhanced by the action of sodium dodecyl sulfate or sodium tripolyphosphate when pH was 12.0.展开更多
文摘The Influence of pulp pH, dispersants and auxiliary collectors on reverse flotation of carbonate-containing iron ores were explored. Interactions between iron ores and quartz were theoretically analyzed by flotation solution chemistry and DLVO theory. The results indicated that the iron concentrate grade improved sharply when pH increased from 11.0 to 12.0, but changed unobviously when pH was larger than 12.0, which was related to solution chemistry of siderite and interactions among particles. Sodium tripolyphosphate was an effective dispersant and sodium dodecyl sulfate was an effective auxiliary collector of KS-III. Both recovery and grade enhanced by the action of sodium dodecyl sulfate or sodium tripolyphosphate when pH was 12.0.