An orifice is used widely as a flow meter or a contraction device in pipeline systems in hydro-power plants, thermal power plants, and chemical plants because of its simple construction, high reliability, and low cost...An orifice is used widely as a flow meter or a contraction device in pipeline systems in hydro-power plants, thermal power plants, and chemical plants because of its simple construction, high reliability, and low cost. However, it is well known that flow-accelerated corrosion (FAC) occurs on the pipe wall downstream of the orifice. Some of the authors have examined FAC through experimental and numerical analyses and have reported that one of the major governing parameters of FAC for single-phase water flow is the pressure fluctuation p’ on the pipe wall, and also that pipe wall thinning rate TR can be estimated by p’. In addition, they have presented the effects of the ori-fice geometry on p’ or TR, and have described a method for suppressing p’ or TR. In the present study, FAC for a two-phase air-water bubble flow is examined and compared with the single-phase water flow experimentally. Further, it is shown that because p’ is also considered a governing parameter of FAC for a two-phase air-water bubble flow, TR can be estimated using p’. It is also indicated that, by using a downstream pipe with a smaller diameter than that of the upstream pipe, p’ or TR can be suppressed.展开更多
Recently, damage caused by liquid droplet impingement erosion (LDIE) in addition to flow-accelerated corrosion (FAC) has frequently occurred in the secondary side steam piping of nuclear power plants, and the damage-o...Recently, damage caused by liquid droplet impingement erosion (LDIE) in addition to flow-accelerated corrosion (FAC) has frequently occurred in the secondary side steam piping of nuclear power plants, and the damage-occurring frequency is expected to increase as their operating years’ increase. In order to scrutinize its causes, therefore, an experimental study was conducted to understand how the behavior of LDIE-FAC multiple degradation changes when the piping of nuclear power plants is operated for a long time. Experimental results show that more magnetite was formed on the surface of the carbon steel specimen than on the low-alloy steel specimen, and that the rate of magnetite formation and extinction reached equilibrium due to the complex action of liquid droplet impingement erosion and flow-accelerated corrosion after a certain period of time. Furthermore, it was confirmed at the beginning of the experiment that A106 Gr.B specimen has more mass loss than A335 P22 specimen. After a certain period of time, however, the mass loss tends to be the opposite. This is presumed to have resulted from the magnetite formed on the surface playing a role in suppressing liquid droplet impingement erosion. In addition, it was confirmed that the amount of erosion linearly increases under the conditions in which the formation and extinction of magnetite reach equilibrium.展开更多
A number of piping components in the secondary system of nuclear power plants (NPPs) have been exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, LDIE (Liquid Droplet Impingeme...A number of piping components in the secondary system of nuclear power plants (NPPs) have been exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, LDIE (Liquid Droplet Impingement Erosion), and SPE (Solid Particle Erosion). Those mechanisms may lead to thinning, leaking, or the rupture of components. Due to the pipe ruptures caused by wall thinning of Surry Unit 2 in 1986 and Mihama Unit 3 in 2004, pipe wall thinning management has emerged as one of the most important issues in the nuclear industry. To manage the wall thinning of pipes caused by FAC and erosion, KEPCO-E & C has developed ToSPACE program. It can predict both FAC & erosion phenomena, and also be utilized in the pipe wall thinning management works such as susceptibility analysis, UT (Ultrasonic Test) data evaluation as well as establishment of long-term inspection plan. Even though the ToSPACE can predict the five aging mechanisms mentioned above, only the FAC prediction result using ToSPACE was compared herein with the experimental result using FACTS (Flow Accelerated Corrosion Test System) to verify the ToSPACE’s capability. In addition, the FAC prediction result using ToSPACE was also compared with that of CHECWORKS that is widely used all over the world.展开更多
There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Im...There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Impingement). Therefore, nuclear power plants implement inspection programs to detect and control damages caused by such mechanisms. UT (Ultrasonic Test), one of the non-destructive tests, is the most commonly used method for inspecting the integrity of piping components. According to the management plan, several hundred components, being composed of as many as 100 to 300 inspection data points, are inspected during every RFO (Re-Fueling Outage). To acquire UT data of components, a large amount of expense is incurred. It is, however, difficult to find a proper method capable of verifying the reliability of UT data prior to the wear rate evaluation. This study describes the review of UT evaluation process and the influence of UT measurement error. It is explored that SAM (Square Average Method), which was suggested as a method for reliability analysis in the previous study, is found to be suitable for the determination whether the measured thickness is acceptable or not. And, safety factors are proposed herein through the statistical analysis taking into account the components’ type.展开更多
文摘An orifice is used widely as a flow meter or a contraction device in pipeline systems in hydro-power plants, thermal power plants, and chemical plants because of its simple construction, high reliability, and low cost. However, it is well known that flow-accelerated corrosion (FAC) occurs on the pipe wall downstream of the orifice. Some of the authors have examined FAC through experimental and numerical analyses and have reported that one of the major governing parameters of FAC for single-phase water flow is the pressure fluctuation p’ on the pipe wall, and also that pipe wall thinning rate TR can be estimated by p’. In addition, they have presented the effects of the ori-fice geometry on p’ or TR, and have described a method for suppressing p’ or TR. In the present study, FAC for a two-phase air-water bubble flow is examined and compared with the single-phase water flow experimentally. Further, it is shown that because p’ is also considered a governing parameter of FAC for a two-phase air-water bubble flow, TR can be estimated using p’. It is also indicated that, by using a downstream pipe with a smaller diameter than that of the upstream pipe, p’ or TR can be suppressed.
文摘Recently, damage caused by liquid droplet impingement erosion (LDIE) in addition to flow-accelerated corrosion (FAC) has frequently occurred in the secondary side steam piping of nuclear power plants, and the damage-occurring frequency is expected to increase as their operating years’ increase. In order to scrutinize its causes, therefore, an experimental study was conducted to understand how the behavior of LDIE-FAC multiple degradation changes when the piping of nuclear power plants is operated for a long time. Experimental results show that more magnetite was formed on the surface of the carbon steel specimen than on the low-alloy steel specimen, and that the rate of magnetite formation and extinction reached equilibrium due to the complex action of liquid droplet impingement erosion and flow-accelerated corrosion after a certain period of time. Furthermore, it was confirmed at the beginning of the experiment that A106 Gr.B specimen has more mass loss than A335 P22 specimen. After a certain period of time, however, the mass loss tends to be the opposite. This is presumed to have resulted from the magnetite formed on the surface playing a role in suppressing liquid droplet impingement erosion. In addition, it was confirmed that the amount of erosion linearly increases under the conditions in which the formation and extinction of magnetite reach equilibrium.
文摘A number of piping components in the secondary system of nuclear power plants (NPPs) have been exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, LDIE (Liquid Droplet Impingement Erosion), and SPE (Solid Particle Erosion). Those mechanisms may lead to thinning, leaking, or the rupture of components. Due to the pipe ruptures caused by wall thinning of Surry Unit 2 in 1986 and Mihama Unit 3 in 2004, pipe wall thinning management has emerged as one of the most important issues in the nuclear industry. To manage the wall thinning of pipes caused by FAC and erosion, KEPCO-E & C has developed ToSPACE program. It can predict both FAC & erosion phenomena, and also be utilized in the pipe wall thinning management works such as susceptibility analysis, UT (Ultrasonic Test) data evaluation as well as establishment of long-term inspection plan. Even though the ToSPACE can predict the five aging mechanisms mentioned above, only the FAC prediction result using ToSPACE was compared herein with the experimental result using FACTS (Flow Accelerated Corrosion Test System) to verify the ToSPACE’s capability. In addition, the FAC prediction result using ToSPACE was also compared with that of CHECWORKS that is widely used all over the world.
文摘There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Impingement). Therefore, nuclear power plants implement inspection programs to detect and control damages caused by such mechanisms. UT (Ultrasonic Test), one of the non-destructive tests, is the most commonly used method for inspecting the integrity of piping components. According to the management plan, several hundred components, being composed of as many as 100 to 300 inspection data points, are inspected during every RFO (Re-Fueling Outage). To acquire UT data of components, a large amount of expense is incurred. It is, however, difficult to find a proper method capable of verifying the reliability of UT data prior to the wear rate evaluation. This study describes the review of UT evaluation process and the influence of UT measurement error. It is explored that SAM (Square Average Method), which was suggested as a method for reliability analysis in the previous study, is found to be suitable for the determination whether the measured thickness is acceptable or not. And, safety factors are proposed herein through the statistical analysis taking into account the components’ type.