Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a ...Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a lower temperature. The water model experiment of a six-strand tundish of Tianjin Iron & Steel Co. Ltd. was performed, a new "U" type baffle was obtained, and its parameters were defined by perpendicular analysis. The "U" baffle can not only improve those imperfections, but also prolong the residence time of nonmetallic inclusions, which is good for their flotation and separation.展开更多
The metallurgical effect of a round tundish used to cast heavy steel ingots in machine works at present was evaluated through water modeling experiments. The flow control devices of the improved oval tundish, which wa...The metallurgical effect of a round tundish used to cast heavy steel ingots in machine works at present was evaluated through water modeling experiments. The flow control devices of the improved oval tundish, which was used instead of the round tundish, had been optimized. The results show that the residence time of the round tundish is short, its inclusion removal efficiency is too low, and it has more dead zones and an unreasonable flow field. Compared with the round tundish, the improved oval tundish with the optimized weir and dam has a better effect: its minimum residence time is prolonged by 38.1 s, the average residence time is prolonged by 233.4 s, its dead volume fraction decreases from 26% to 15%, and the ratio of plug volume fraction to dead volume fraction increases from 0.54 to 1.27. The inclusion removal efficiency also increases by 17.5%.展开更多
The physical model of a ten-strand billet caster tundish was established to study the effects of various flow control devices on the melt flow. Before and after the optimization of the melt flow, the inclusion removal...The physical model of a ten-strand billet caster tundish was established to study the effects of various flow control devices on the melt flow. Before and after the optimization of the melt flow, the inclusion removal in the tundish was evaluated by plant trials. The physical modeling results show that when combined with a baffle, the turbulence inhibitor, instead of the impact pad, can significantly improve the melt flow. A turbulence inhibitor with a longer length of inner cavity and without an extending lip at the top of the sidewall seems to be efficient in the improvement of the melt flow. Various types and designs of baffles all influence the flow characteristics significantly. The "V" type baffles are better than the straight baffles for flow control. The "V" type baffle with four inclined holes at the sidewall away from the stopper rods is better in melt flow control than the one with one inclined hole at each sidewall. The combination of a well-designed turbulence inhibitor and an appropriate baffle shows high efficiency on improving the melt flow and an optimal proposal was presented. Plant trials indicate that, compared with the original tundish configuration in prototype, the inclusions reduce by 42% and the inclusion distribution of individual strands is more similar with the optimal one. The optimal tundish configuration effectively improves the melt flow in the ten-strand billet caster tundish.展开更多
We report the design,fabrication and characterization of a microelectromechanical systems(MEMS)flow control device for gas chromatography(GC)with the capability of sustaining high-temperature environments.We further d...We report the design,fabrication and characterization of a microelectromechanical systems(MEMS)flow control device for gas chromatography(GC)with the capability of sustaining high-temperature environments.We further demonstrate the use of this new device in a novel MEMS chopper-modulated gas chromatography-electroantennography(MEMS-GC-EAG)system to identify specific volatile organic compounds(VOCs)at extremely low concentrations.The device integrates four pneumatically actuated microvalves constructed via thermocompression bonding of the polyimide membrane between two glass substrates with microstructures.The overall size of the device is 32 mm×32 mm,and it is packaged in a 50 mm×50 mm aluminum housing that provides access to the fluidic connections and allows thermal control.The characterization reveals that each microvalve in the flow control chip provides an ON to OFF ratio as high as 1000:1.The device can operate reliably for more than 1 million switching cycles at a working temperature of 300℃.Using the MEMS-GC-EAG system,we demonstrate the successful detection of cis-11-hexadecenal with a concentration as low as 1 pg at a demodulation frequency of 2 Hz by using an antenna harvested from the male Helicoverpa Virescens moth.In addition,1μg of a green leafy volatile(GLV)is barely detected using the conventional GC-EAG,while MEMS-GC-EAG can readily detect the same amount of GLV,with an improvement in the signal-to-noise ratio(SNR)of~22 times.We expect that the flow control device presented in this report will allow researchers to explore new applications and make new discoveries in entomology and other fields that require high-temperature flow control at the microscale.展开更多
Aiming at the problem that the existence of inclusions in the tundish continuous casting process can easily lead to quality defects of the slab,the stainless steel continuous casting tundish was taken as the research ...Aiming at the problem that the existence of inclusions in the tundish continuous casting process can easily lead to quality defects of the slab,the stainless steel continuous casting tundish was taken as the research object.The effects of flow control device,inclusion density and inclusion size on the mixing characteristics of molten steel and inclusion behavior in tundish were studied.The results showed that compared with the tundish without flow control device,the average residence time of molten steel was prolonged by about 49 s,the dead zone volume fraction was reduced by 8.93%,and the piston fluid integral rate was increased by 12.68%.In the turbulence inhibitor(TI)tundish with weir-dam combination,the removal rate of inclusions with a density of 2700 kg m^(-3) and a particle size of 5 lm is 63.32%,while the removal rate of large inclusions with a density of 150μm could reach 89.04%.When the inclusion particle size was 10-50μm and the density was 2700-4500 kg m^(-3),the effect of inclusion density on inclusion removal rate was small.At the same time,when weir-dam combination TI tundish was set,the inclusions were mainly limited to the slag-metal interface of the first and second chambers of the tundish.The removal rate of inclusions in the first chamber was generally improved,with 10μm inclusions accounting for 47.67% and 150μm inclusions accounting for 60.69%.Furthermore,it has the best effect on the removal of small-size inclusions,especially those less than 70μm.展开更多
Fields of fluid flow and temperature, and residence time distribution(RTD) curves were investigated by mathematical simulation in a one-strand tundish for continuous casting. It was known from the investigation that a...Fields of fluid flow and temperature, and residence time distribution(RTD) curves were investigated by mathematical simulation in a one-strand tundish for continuous casting. It was known from the investigation that a big "spring uprush" formed on surface around the long shroud when molten steel flowed into a turbulence inhibitor(TI) with extending lips and rushed up reversely out of the TI, while four small "spring uprushes" existed on surface when a TI without extending lips because the liquid steel flowed mainly out of the 4 corners of the TI. The flow of liquid steel in the former tundish configuration was not reasonable and the height of an area where temperature was less than 1819 K was about half of liquid surface height on the right side of the stopper, which meant that big dead zone existed in the former tundish configuration. In the optimal one, the height of such area was only seventh of the liquid surface height. The RTD curves obtained from the mathematical simulation basically agreed with those from the physical modeling and the flow characteristics obtained from these two methods agreed with each other.展开更多
文摘Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a lower temperature. The water model experiment of a six-strand tundish of Tianjin Iron & Steel Co. Ltd. was performed, a new "U" type baffle was obtained, and its parameters were defined by perpendicular analysis. The "U" baffle can not only improve those imperfections, but also prolong the residence time of nonmetallic inclusions, which is good for their flotation and separation.
基金financially supported by the Key Special Project in the National Science & Technology Program during the Eleventh Five-Year Plan Period (No.2009ZX04014-061-7)
文摘The metallurgical effect of a round tundish used to cast heavy steel ingots in machine works at present was evaluated through water modeling experiments. The flow control devices of the improved oval tundish, which was used instead of the round tundish, had been optimized. The results show that the residence time of the round tundish is short, its inclusion removal efficiency is too low, and it has more dead zones and an unreasonable flow field. Compared with the round tundish, the improved oval tundish with the optimized weir and dam has a better effect: its minimum residence time is prolonged by 38.1 s, the average residence time is prolonged by 233.4 s, its dead volume fraction decreases from 26% to 15%, and the ratio of plug volume fraction to dead volume fraction increases from 0.54 to 1.27. The inclusion removal efficiency also increases by 17.5%.
基金supported by the National Natural Science Foundation of China(No.51474059,No.51204042)the Program for Liaoning Excellent Talents in University(No.LJQ2014031)the Fundamental Research Funds for the Central Universities(No.N140205003)
文摘The physical model of a ten-strand billet caster tundish was established to study the effects of various flow control devices on the melt flow. Before and after the optimization of the melt flow, the inclusion removal in the tundish was evaluated by plant trials. The physical modeling results show that when combined with a baffle, the turbulence inhibitor, instead of the impact pad, can significantly improve the melt flow. A turbulence inhibitor with a longer length of inner cavity and without an extending lip at the top of the sidewall seems to be efficient in the improvement of the melt flow. Various types and designs of baffles all influence the flow characteristics significantly. The "V" type baffles are better than the straight baffles for flow control. The "V" type baffle with four inclined holes at the sidewall away from the stopper rods is better in melt flow control than the one with one inclined hole at each sidewall. The combination of a well-designed turbulence inhibitor and an appropriate baffle shows high efficiency on improving the melt flow and an optimal proposal was presented. Plant trials indicate that, compared with the original tundish configuration in prototype, the inclusions reduce by 42% and the inclusion distribution of individual strands is more similar with the optimal one. The optimal tundish configuration effectively improves the melt flow in the ten-strand billet caster tundish.
基金We also thank DuPont for providing the polyimide membrane samples.This work was supported by the National Science Foundation under Grant Number DBI-1353870,which was offered to S-YZ and TCB.
文摘We report the design,fabrication and characterization of a microelectromechanical systems(MEMS)flow control device for gas chromatography(GC)with the capability of sustaining high-temperature environments.We further demonstrate the use of this new device in a novel MEMS chopper-modulated gas chromatography-electroantennography(MEMS-GC-EAG)system to identify specific volatile organic compounds(VOCs)at extremely low concentrations.The device integrates four pneumatically actuated microvalves constructed via thermocompression bonding of the polyimide membrane between two glass substrates with microstructures.The overall size of the device is 32 mm×32 mm,and it is packaged in a 50 mm×50 mm aluminum housing that provides access to the fluidic connections and allows thermal control.The characterization reveals that each microvalve in the flow control chip provides an ON to OFF ratio as high as 1000:1.The device can operate reliably for more than 1 million switching cycles at a working temperature of 300℃.Using the MEMS-GC-EAG system,we demonstrate the successful detection of cis-11-hexadecenal with a concentration as low as 1 pg at a demodulation frequency of 2 Hz by using an antenna harvested from the male Helicoverpa Virescens moth.In addition,1μg of a green leafy volatile(GLV)is barely detected using the conventional GC-EAG,while MEMS-GC-EAG can readily detect the same amount of GLV,with an improvement in the signal-to-noise ratio(SNR)of~22 times.We expect that the flow control device presented in this report will allow researchers to explore new applications and make new discoveries in entomology and other fields that require high-temperature flow control at the microscale.
基金financially supported by the National Natural Science Foundation of China(Nos.52174321,51874203 and 52074186).
文摘Aiming at the problem that the existence of inclusions in the tundish continuous casting process can easily lead to quality defects of the slab,the stainless steel continuous casting tundish was taken as the research object.The effects of flow control device,inclusion density and inclusion size on the mixing characteristics of molten steel and inclusion behavior in tundish were studied.The results showed that compared with the tundish without flow control device,the average residence time of molten steel was prolonged by about 49 s,the dead zone volume fraction was reduced by 8.93%,and the piston fluid integral rate was increased by 12.68%.In the turbulence inhibitor(TI)tundish with weir-dam combination,the removal rate of inclusions with a density of 2700 kg m^(-3) and a particle size of 5 lm is 63.32%,while the removal rate of large inclusions with a density of 150μm could reach 89.04%.When the inclusion particle size was 10-50μm and the density was 2700-4500 kg m^(-3),the effect of inclusion density on inclusion removal rate was small.At the same time,when weir-dam combination TI tundish was set,the inclusions were mainly limited to the slag-metal interface of the first and second chambers of the tundish.The removal rate of inclusions in the first chamber was generally improved,with 10μm inclusions accounting for 47.67% and 150μm inclusions accounting for 60.69%.Furthermore,it has the best effect on the removal of small-size inclusions,especially those less than 70μm.
基金Item Sponsored by Key Project of National Natural Science Foundation of China(61333006)
文摘Fields of fluid flow and temperature, and residence time distribution(RTD) curves were investigated by mathematical simulation in a one-strand tundish for continuous casting. It was known from the investigation that a big "spring uprush" formed on surface around the long shroud when molten steel flowed into a turbulence inhibitor(TI) with extending lips and rushed up reversely out of the TI, while four small "spring uprushes" existed on surface when a TI without extending lips because the liquid steel flowed mainly out of the 4 corners of the TI. The flow of liquid steel in the former tundish configuration was not reasonable and the height of an area where temperature was less than 1819 K was about half of liquid surface height on the right side of the stopper, which meant that big dead zone existed in the former tundish configuration. In the optimal one, the height of such area was only seventh of the liquid surface height. The RTD curves obtained from the mathematical simulation basically agreed with those from the physical modeling and the flow characteristics obtained from these two methods agreed with each other.