The piezoelectric pump with nozzle/diffuser-elements, which oscillating formdiffering from regular volumetric reciprocating or rotating pumps because there arenozzle/diffuser-elements substituted for regular valves, i...The piezoelectric pump with nozzle/diffuser-elements, which oscillating formdiffering from regular volumetric reciprocating or rotating pumps because there arenozzle/diffuser-elements substituted for regular valves, is a new type pump whose actuator is apiezoelectric ceramal part with verse piezoelectric effect In recent year, piezoelectric pump ispaid increasing attention to because it is an ideal candidate in application in such area as medicalhealth, mechanical tools and micro-mechanism. The fundamental research on it, however, is still notmade through. Focuses on the phenomenon of different directions of flow among Germany pump, Chinesepump and Swiss pump, which are all fitted with nozzle/diffuser-elements, and analyzes the coneangle of nozzle/diffuser-elements based on the flow equation of valve-less piezoelectric pump withnozzle/diffuser-elements. As a result, the concepts of diffuser toss coefficient and losscoefficient are introduced to explain these phenomena, from which a discussion is given on theoptimization of the cone angle of nozzle/diffuser-element aiming at the maximum of pump flow.展开更多
Digital elevation models (DEMs) are widely used to define the flow direction in distributed hydrological models for simulation of streamflow. In recent decades, numerous methods for flow direction determination have...Digital elevation models (DEMs) are widely used to define the flow direction in distributed hydrological models for simulation of streamflow. In recent decades, numerous methods for flow direction determination have been applied successfully to mountainous regions. Nevertheless, some problems still exist when those methods are used for flat or gently sloped areas The present study reviews the conventional methods of determining flow direction for such landscapes and analyzes the problems of these methods. Two different methods of determining flow direction are discussed and were applied to the Xitiaoxi Catchment, located in the Taihu Basin in southern China, which has both mountainous and flat terrain. Both the agree method and the shortest path method use drainage networks derived from a remote sensing image to determine the correct location of the stream. The results indicate that the agree method provides a better fit with the DEM for the hilly region than the shortest path method. For the flat region where the flow has been diverted and rerouted by land managers, both methods require observation of the drainage network to determine the flow direction. In order to clarify the applicability of the two methods, both are employed in catchment hydrological models conceptually based on the Xinanjiang model and implemented with PCRaster. The simulation results show that both methods can be successfully applied in hydrological modeling. There are no evident differences in the modeled discharge when using the two methods at different spatial scales.展开更多
Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow d...Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow data,traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy.In this study,a combined flow direction level traffic flow prediction graph convolutional network(GCN)and long short-term memory(LSTM)model based on spatiotemporal characteristics is proposed.First,a GCN model is employed to capture the topological structure of the data graph and extract the spatial features of road networks.Additionally,due to the capability to handle long-term dependencies,the longterm memory is used to predict the time series of traffic flow and extract the time features.The proposed model is evaluated using real-world data,which are obtained from the intersection of Liuquan Road and Zhongrun Avenue in the Zibo High-Tech Zone of China.The results show that the developed combined GCNLSTM flow direction level traffic flow prediction model can perform better than the single models of the LSTM model and GCN model,and the combined ARIMA-LSTM model in traffic flow has a strong spatiotemporal correlation.展开更多
Electrochemical milling is eminently suitable for machining aerospace parts(which usually have complex structures) because of its great flexibility. However,titanium alloys are particularly sensitive to changes in the...Electrochemical milling is eminently suitable for machining aerospace parts(which usually have complex structures) because of its great flexibility. However,titanium alloys are particularly sensitive to changes in the flow field,which often cause severe pitting corrosion of the machined surface. Although electrochemical sinking and milling(ESM) can restrict the flow of electrolyte and reduce pitting corrosion,the quality of the machined surface is not ideal because the latter are susceptible to stray corrosion. To reduce such corrosion and improve the surface quality,the internal flow channel of the tool electrode and the cutting depth were investigated thoroughly. Extensive experiments revealed that stray corrosion could be reduced significantly and surface quality improved by controlling the electrolyte flow direction in the machining area,which was achieved by changing the style of the internal flow channel of the tool electrode. These reductions in corrosion and surface roughness were achieved using a tool electrode with a triangular internal flow channel. In addition,the main components and micro-hardness of the machined surface were close to that of the TB6 titanium alloy substrate,which helped to maintain the inherent high strength of the titanium alloy. The surface of the workpiece changed from being hydrophilic to being hydrophobic,which reduced the flow resistance.展开更多
Ephemeral gullies,which are widely developed worldwide and threaten farmlands,have aroused a growing concern.Identifying and mapping gullies are generally considered prerequisites of gully erosion assessment.However,e...Ephemeral gullies,which are widely developed worldwide and threaten farmlands,have aroused a growing concern.Identifying and mapping gullies are generally considered prerequisites of gully erosion assessment.However,ephemeral gully mapping remains a challenge.In this study,we proposed a flow-directional detection for identifying ephemeral gullies from high-resolution images and digital elevation models(DEMs).Ephemeral gullies exhibit clear linear features in high-resolution images.An edge detection operator was initially used to identify linear features from high-resolution images.Then,according to gully erosion mechanism,the flow-directional detection was designed.Edge images obtained from edge detection and flow directions obtained from DEMs were used to implement the flow-directional detection that detects ephemeral gullies along the flow direction.Results from ten study areas in the Loess Plateau of China showed that ranges of precision,recall,and Fmeasure are 6 o.66%-90.47%,65.74%-94.98%,and63.10%-91.93%,respectively.The proposed method is flexible and can be used with various images and DEMs.However,analysis of the effect of DEM resolution and accuracy showed that DEM resolution only demonstrates a minor effect on the detection results.Conversely,DEM accuracy influences the detection result and is more important than the DEM resolution.The worse the vertical accuracy of DEM,the lower the performance of the flow-directional detection will be.This work is beneficial to research related to monitoring gully erosion and assessing soil loss.展开更多
Cultivation and hilling are important steps in crop field management and provide an important guarantee of crop quality and quantity.With the aim of addressing how the soil flow direction of a traditional cultivation ...Cultivation and hilling are important steps in crop field management and provide an important guarantee of crop quality and quantity.With the aim of addressing how the soil flow direction of a traditional cultivation and hilling machine is difficult to control,and because it is difficult to achieve high ridge soil cultivation,among other issues,the components of the soil flow direction control of a hilling machine was designed.The components of the soil flow direction control consisted of a soil-feeding plough device,spiral knives and guide cover devices,etc.The design and analysis of the guiding parts for the two tools of the soil-feeding plough device and the spiral knife were performed to obtain an appropriate guide wall and helix angle.The guiding principle in the flow direction control components was analyzed.The design of the guide wall adopts the torsional columnar plough surface,and the elementary line angle changes from stable to increasing.The analysis of spiral milling showed that when the spiral angle is large,the milling effect is better.According to the discrete element method,the working part of the machine-soil interaction model was established.EDEM software was used to simulate the control components for the soil flow direction of the hilling machine for compound cutting.The design method with a two-factor comprehensive test was used to study the linear velocity along the outer part of the spiral knife and the influence of the forward velocity of machine of the implement on the soil cultivation effect.The results of the discrete element simulation showed that both the linear velocity along the outer part of the spiral knife and the forward velocity of the machine have extremely significant effects on the transportation of particles to the ridge top and the hilling thickness.Following multiple comparisons of the average hilling thickness with different linear velocities along with the outer spiral knife and different forward velocities of the machine,it is concluded that the performance of the machine is better when the linear velocity along the outer spiral knife is 3.01 m/s and the forward velocity of the machine is 0.7 m/s.The research conclusion had great theoretical value and practical significance for the design of the machine,which worked for cultivation and hilling.展开更多
BACKGROUND:Neuro-rehabilitative training has been shown to promote motor function recovery in stroke patients,although the underlying mechanisms have not been fully clarified.OBJECTIVE:To investigate the effects of ...BACKGROUND:Neuro-rehabilitative training has been shown to promote motor function recovery in stroke patients,although the underlying mechanisms have not been fully clarified.OBJECTIVE:To investigate the effects of finger movement training on functional connectivity and information flow direction in cerebral motor areas of healthy people using electroencephalogram (EEG).DESIGN,TIME AND SETTING:A self-controlled,observational study was performed at the College of Life Science and Bioengineering,Beijing University of Technology between December 2008 and April 2009.PARTICIPANTS:Nineteen healthy adults,who seldom played musical instruments or keyboards,were included in the present study.METHODS:Specific finger movement training was performed,and all subjects were asked to separately press keys with their left or right hand fingers,according to instructions.The task comprised five sessions of test train test train-test.Thirty-six channel EEG signals were recorded in different test sessions prior to and after training.Data were statistically analyzed using one-way analysis of variance.MAIN OUTCOME MEASURES:The number of effective performances,correct ratio,average response time,average movement time,correlation coefficient between pairs of EEG channels,and information flow direction in motor regions were analyzed and compared between different training sessions.RESULTS:Motor function of all subjects was significantly improved in the third test comparedwith the first test (P〈 0.01).More than 80% of connections were strengthened in the motor-related areas following two training sessions,in particular the primary motor regions under the C4 electrode.Compared to the first test,a greater amount of information flowed from the Cz and Fcz electrodes (corresponding to supplementary motor area) to the C4 electrode in the third test.CONCLUSION:Finger task training increased motor ability in subjects by strengthening connections and changing information flow in the motor areas.These results provided a greater understanding of the mechanisms involved in motor rehabilitation.展开更多
There are many motors in operation or on standby in nuclear power plants,and the startup of group motors will have a great impact on the voltage of the emergency bus.At present,there is no special or inexpensive softw...There are many motors in operation or on standby in nuclear power plants,and the startup of group motors will have a great impact on the voltage of the emergency bus.At present,there is no special or inexpensive software to solve this problem,and the experience of engineers is not accurate enough.Therefore,this paper developed a method and system for the startup calculation of group motors in nuclear power plants and proposed an automatic generation method of circuit topology in nuclear power plants.Each component in the topology was given its unique number,and the component class could be constructed according to its type and upper and lower connections.The subordination and topology relationship of switches,buses,and motors could be quickly generated by the program according to the component class,and the simplified direct power flow algorithm was used to calculate the power flow for the startup of group motors according to the above relationship.Then,whether the bus voltage is in the safe range and whether the voltage exceeds the limit during the startup of the group motor could be judged.The practical example was used to verify the effectiveness of the method.Compared with other professional software,the method has high efficiency and low cost.展开更多
In order to decrease the anisotropy of mechanical properties, the rigid-plastic mechanical model for the forging method with horizontal V-shaped anvil is presented. The forging method, through the change of anvils sha...In order to decrease the anisotropy of mechanical properties, the rigid-plastic mechanical model for the forging method with horizontal V-shaped anvil is presented. The forging method, through the change of anvils shape, is able to control fibrous tissue direction, to improve the anisotropy of mechanical properties of axial forgings, to realize uniform forging. Therefore, the forging method can overcome the defect that conventional forging methods produce. The mechanism of the forging method with horizontal V-shaped anvil and the process of metal deformation are analyzed. The agreement of theoretical analysis with experimental study verifies the fact that the forging method with horizontal V-shaped anvil can control effectively the mechanical properties of axial forgings.展开更多
The wind turbine has the advantage of operating uninterruptedly, which ensures a constant source of electricity. This investigation includes a clear overview of the wind velocity, the flow direction;the amount of ener...The wind turbine has the advantage of operating uninterruptedly, which ensures a constant source of electricity. This investigation includes a clear overview of the wind velocity, the flow direction;the amount of energy reserved, suitable regions for wind turbine installation, etc. The feasibility and possibility of installing a wind energy conversion system for several locations in Bangladesh are analyzed. A brief study of wind characteristics in different locations in Bangladesh is reported. Wind data obtained from the Bangladesh Meteorological Department (BMD) for Mongla, Patuakhali, Kutubdia, and Bhola stations are analyzed through wind rose, frequency distribution, and average wind velocity. The performance of suitable small-scale wind turbines will be assessed in order to confirm the prospect of wind turbines in Bangladesh.展开更多
Although several studies have assessed the effects of thinning on water quality,including nitrogen(N)exports,few have examined N-saturated plantations.This study assessed the short-term effect of thinning on N exports...Although several studies have assessed the effects of thinning on water quality,including nitrogen(N)exports,few have examined N-saturated plantations.This study assessed the short-term effect of thinning on N exports from a N-saturated plantation forest in northern Kyushu,western Japan,that was thinned(43%of basal area)during January-March 2012.Water levels at the gauging station were continually measured,and streamwater baseflow and stormflow samples were collected before(2011)and after(2013)forest thinning.Annual precipitation before(2469 mm)and after(2418 mm)forest thinning differed little,and annual water discharge after thinning(1641 mm)was similar to that before thinning(1609 mm).However,direct flow during stormflow periods was higher after thinning(260 mm)than before(153 mm).The concentrations of major ions in stream water did not differ before and after thinning.As a result,the high annual dissolved inorganic N(DIN)exports differed little before(35.8 kg N ha^-1 a^-1)and after(36.5 kg N ha^-1 a^-1)forest thinning.DIN exports during stormflow periods were slightly higher after(12.2 kg N ha^-1 a^-1)than before thinning(10.5 kg N ha^-1 a^-1)and were proportional to the increased direct flow after thinning(561 mm after vs.470 mm before thinning).We concluded that thinning does not affect annual N exports from the N-saturated plantation forest,but it can increase the proportion of N exported during stormflow periods in proportion to increased water volume of direct flow after thinning.展开更多
China’s economy has shown signs of a slowdown, as indicated in the newly released third-quarter economic figures.GDP growth in the first three quarters was 9.9 percent, 2.3 percentage points lower than the same perio...China’s economy has shown signs of a slowdown, as indicated in the newly released third-quarter economic figures.GDP growth in the first three quarters was 9.9 percent, 2.3 percentage points lower than the same period last year.展开更多
Direct numerical simulations(DNSs) of purely elastic turbulence in rectilinear shear flows in a three-dimensional(3D) parallel plate channel were carried out,by which numerical databases were established.Based on ...Direct numerical simulations(DNSs) of purely elastic turbulence in rectilinear shear flows in a three-dimensional(3D) parallel plate channel were carried out,by which numerical databases were established.Based on the numerical databases,the present paper analyzed the structural and statistical characteristics of the elastic turbulence including flow patterns,the wall effect on the turbulent kinetic energy spectrum,and the local relationship between the flow motion and the microstructures' behavior.Moreover,to address the underlying physical mechanism of elastic turbulence,its generation was presented in terms of the global energy budget.The results showed that the flow structures in elastic turbulence were 3D with spatial scales on the order of the geometrical characteristic length,and vortex tubes were more likely to be embedded in the regions where the polymers were strongly stretched.In addition,the patterns of microstructures' elongation behave like a filament.From the results of the turbulent kinetic energy budget,it was found that the continuous energy releasing from the polymers into the main flow was the main source of the generation and maintenance of the elastic turbulent status.展开更多
The Nkoup watershed(10°35’-10°47’E and 5°27’-5°42’N)is a volcanic zone situated in Nun Plain West Cameroon.The high fertility of the soils makes it a strategic agropastoral area where wat...The Nkoup watershed(10°35’-10°47’E and 5°27’-5°42’N)is a volcanic zone situated in Nun Plain West Cameroon.The high fertility of the soils makes it a strategic agropastoral area where water resources are heavily exploited and used for several purposes.Due to human activities,soils and water resources are deteriorating,giving birth to water pollution and hydromorphological hazards.This work aims to determine the hydromorphometric parameters of the Nkoup watershed so that the data obtained help in the sustainable management of water resources and conservation of soil.To achieve this aim,various data were collected from DEM dataset derived from SRTM and processed in specialized software(QGIS and ArGIS).The simplified hydrological balance was calculated using the upstream approach.The Nkoup watershed has:Axial length L_(ax)=25.8 km,Axial Width W_(ax)=11.1 km,Perimeter P=132.6 km,Area A=173.7 km^(2),Average Altitude Ha=1726.3 m,Compactness Index Icomp=2.8,Relief ratio Rr=3.9 m/km,Circularity ratio Rc=0.1,Elongation ratio R=0.1,Drainage texture ratio Rt=0.6,Drainage density Dd=0.5 km/km^(2).Stream Frequency Fs=0.4,Channel Sinuosity Index CSI=0.8,Stream gradient Sg=0.6 and global slope Index Ig=6.8 m/km.The specific height Difference Ds=89.4 m shows moderate relief.The precipitation and evapotranspiration are unevenly distributed.With P=187.7 mm/an,ETP=953.4 mm/an,Q=4.2 m3/s,R=762.5 mm/an,ETR=832.3 mm/an and I=282.9 mm/an.The Nkoup,36.9 km long,has a sinuous aspect due to the low slope and the high CSI.The piezometric levels vary according to the seasons and the groundwater flow follows the N-S direction as surface flow.展开更多
This paper proposes a novel fault location method for overhead feeders,which is based on the direct load flow approach.The method is developed in the phase domain to effectively deal with unbalanced network conditions...This paper proposes a novel fault location method for overhead feeders,which is based on the direct load flow approach.The method is developed in the phase domain to effectively deal with unbalanced network conditions,while it can also handle any type of distributed generation(DG)units without requiring equivalent models.By utilizing the line series parameters and synchronized or unsynchronized voltage and current phasor measurements taken from the sources,the method reliably identifies the most probable faulty sections.With the aid of an index,the exact faulty section among the multiple candidates is determined.Extensive simulation studies for the IEEE 123-bus test feeder demonstrate that the proposed method accu-rately estimates the fault position under numerous short-circuit conditions with varying prefault system loading conditions,fault resistances,and measurement errors.The proposed method is promising for practical applications due to the limited number of required measurement devices as well as the short computation time.展开更多
A wind-vehicle-bridge system can be regarded as an interaction result of wind-bridge interaction, wind-vehicle interaction and vehicle-bridge interaction, which is determined by nature wind, dynamic characteristics of...A wind-vehicle-bridge system can be regarded as an interaction result of wind-bridge interaction, wind-vehicle interaction and vehicle-bridge interaction, which is determined by nature wind, dynamic characteristics of vehicle and bridge structures, interrelationship between bridge and vehicle dynamic properties and so on. Firstly, based on the traffic loading investigation on the expressway bridge within 24 hours a day, all the critical parameters of traffic flow, such as the vehicle type, weight, separation space and speed are all recorded and analyzed to extract its statistical characteristics, which are used to work out random traffic flow simulation program RTF. This RTF program can be embedded with the other general FEM software. Secondly, a dynamic analysis module RTFWVB of the wind-vehicle-bridge coupling vibration under random traffic flow is presented, which can consider arbitrary number of vehicles, multi-lanes and traffic flow direction. Finally, Hangzhou Bay Bridge in China is selected as a numerical example to demonstrate dynamic interaction of the RTFWVB system. The results indicate that the traffic flow direction has just a little influence on bridge dynamic response, that the mean responses are mainly determined by the moving vehicle loads, and that the fluctuating components will increase with the increase of wind speed.展开更多
An experimental analysis on the subsequent yield-surfaces evolution using multiple specimens is presented for a 45 steel after a prescribed pre-strain loading in three different directions respectively, and the yieldi...An experimental analysis on the subsequent yield-surfaces evolution using multiple specimens is presented for a 45 steel after a prescribed pre-strain loading in three different directions respectively, and the yielding is defined by a designated offsetting strain. The size of the subsequent yield surface is found smaller than the initial yield surface; the negative cross effects are observed in the normal loading direction, its shape is not a Mises circle but has a rather blunt nose in loading direction and flat in the opposite. These results strongly depend on the loading path and the prescribed offset plastic strain. The plastic flow direction to the subsequent yield surface is investigated, and it is found that the plastic flow direction deviates from the normal flow rule. The deviation differs from preloading case to preloading case. And the plastic flow direction would have a larger deviation from the normal of the yield surface, if the subsequent yield was defined by a smaller offset strain. Furthermore, the experiments are simulated using the Chaboche model, and the results show that it can rationally predict yield-surface only when yield is defined by a fairly large offset strain.展开更多
In this study,an experiment was performed to clarify the flow field,in which the jets were normally injected into a main supersonic flow surrounded by a porous cavity,and this report figures out interaction between st...In this study,an experiment was performed to clarify the flow field,in which the jets were normally injected into a main supersonic flow surrounded by a porous cavity,and this report figures out interaction between starting shock wave and porous cavity.In the experiment,a porous cavity is attached to a main duct and jets and rods are inserted to the main duct on the porous cavity.To reveal this flow field,the thermal tuft probe was adopted to experimentally investigate the flow in the cavity.In the experiments,the effect of the porous cavity with jets or rods on the flow field is studied by means of visualization of schlieren method with a high speed camera and measurement of cavity flow with thermal tuft probe.As a results,frequency analysis of output of the thermal tuft probe revealed that some clear dominant frequencies were confirmed when the starting shock wave existed around the porous cavity in all cases of jets and rods arrangements.Moreover,visualization of schlieren method with a high speed camera clarified that a starting shock wave had the same dominant frequencies as that of the flow fluctuation in the cavity only around the cavity.展开更多
The influence of the density-dependent symmetry energy on the balance energy (Ebal) of directed flow from heavy ion collisions (HICs) at incident energies covered by INDRA and MSU experiments is studied, using the...The influence of the density-dependent symmetry energy on the balance energy (Ebal) of directed flow from heavy ion collisions (HICs) at incident energies covered by INDRA and MSU experiments is studied, using the updated version of the ultra- relativistic quantum molecular dynamics (UrQMD) model, especially adapted to low-energy heavy ion collisions (HICs). Four mass-symmetric reactions with total mass numbers between 192 and 394 are chosen for investigating the influence of the symmetry energy on the system-mass dependence of Eual. The results show that the uncertainty in the density dependence of the symmetry potential causes changes of Ebal of the order of several MeV, depending on the type of particle considered. The Ebal of neutrons from HICs is particularly sensitive to the density dependence of the symmetry potential energy, while the system-mass dependence of EbaI of Z = 1 particles is not.展开更多
基金This project is supported by Municipal Natural Science Foundation of Beiiing , China (No.3032005).
文摘The piezoelectric pump with nozzle/diffuser-elements, which oscillating formdiffering from regular volumetric reciprocating or rotating pumps because there arenozzle/diffuser-elements substituted for regular valves, is a new type pump whose actuator is apiezoelectric ceramal part with verse piezoelectric effect In recent year, piezoelectric pump ispaid increasing attention to because it is an ideal candidate in application in such area as medicalhealth, mechanical tools and micro-mechanism. The fundamental research on it, however, is still notmade through. Focuses on the phenomenon of different directions of flow among Germany pump, Chinesepump and Swiss pump, which are all fitted with nozzle/diffuser-elements, and analyzes the coneangle of nozzle/diffuser-elements based on the flow equation of valve-less piezoelectric pump withnozzle/diffuser-elements. As a result, the concepts of diffuser toss coefficient and losscoefficient are introduced to explain these phenomena, from which a discussion is given on theoptimization of the cone angle of nozzle/diffuser-element aiming at the maximum of pump flow.
基金supported by the Studies and Research in Sustainability Program (Deutscher Akademischer Austausch Dienst, DAAD)
文摘Digital elevation models (DEMs) are widely used to define the flow direction in distributed hydrological models for simulation of streamflow. In recent decades, numerous methods for flow direction determination have been applied successfully to mountainous regions. Nevertheless, some problems still exist when those methods are used for flat or gently sloped areas The present study reviews the conventional methods of determining flow direction for such landscapes and analyzes the problems of these methods. Two different methods of determining flow direction are discussed and were applied to the Xitiaoxi Catchment, located in the Taihu Basin in southern China, which has both mountainous and flat terrain. Both the agree method and the shortest path method use drainage networks derived from a remote sensing image to determine the correct location of the stream. The results indicate that the agree method provides a better fit with the DEM for the hilly region than the shortest path method. For the flat region where the flow has been diverted and rerouted by land managers, both methods require observation of the drainage network to determine the flow direction. In order to clarify the applicability of the two methods, both are employed in catchment hydrological models conceptually based on the Xinanjiang model and implemented with PCRaster. The simulation results show that both methods can be successfully applied in hydrological modeling. There are no evident differences in the modeled discharge when using the two methods at different spatial scales.
基金supported by the National Natural Science Foundation of China (Grant Nos.71901134&51878165)the National Science Foundation for Distinguished Young Scholars (Grant No.51925801).
文摘Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow data,traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy.In this study,a combined flow direction level traffic flow prediction graph convolutional network(GCN)and long short-term memory(LSTM)model based on spatiotemporal characteristics is proposed.First,a GCN model is employed to capture the topological structure of the data graph and extract the spatial features of road networks.Additionally,due to the capability to handle long-term dependencies,the longterm memory is used to predict the time series of traffic flow and extract the time features.The proposed model is evaluated using real-world data,which are obtained from the intersection of Liuquan Road and Zhongrun Avenue in the Zibo High-Tech Zone of China.The results show that the developed combined GCNLSTM flow direction level traffic flow prediction model can perform better than the single models of the LSTM model and GCN model,and the combined ARIMA-LSTM model in traffic flow has a strong spatiotemporal correlation.
基金This work was supported by the National Natural Science Foundation of China(Grant No.91860208)the National Natural Science Foundation of China for Creative Research Groups(Grant No.51921003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX19_0160)。
文摘Electrochemical milling is eminently suitable for machining aerospace parts(which usually have complex structures) because of its great flexibility. However,titanium alloys are particularly sensitive to changes in the flow field,which often cause severe pitting corrosion of the machined surface. Although electrochemical sinking and milling(ESM) can restrict the flow of electrolyte and reduce pitting corrosion,the quality of the machined surface is not ideal because the latter are susceptible to stray corrosion. To reduce such corrosion and improve the surface quality,the internal flow channel of the tool electrode and the cutting depth were investigated thoroughly. Extensive experiments revealed that stray corrosion could be reduced significantly and surface quality improved by controlling the electrolyte flow direction in the machining area,which was achieved by changing the style of the internal flow channel of the tool electrode. These reductions in corrosion and surface roughness were achieved using a tool electrode with a triangular internal flow channel. In addition,the main components and micro-hardness of the machined surface were close to that of the TB6 titanium alloy substrate,which helped to maintain the inherent high strength of the titanium alloy. The surface of the workpiece changed from being hydrophilic to being hydrophobic,which reduced the flow resistance.
基金funded by the National Natural Science Foundation of China (Grant No. 41930102, 41971333, 41771415, and 41701449)the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. 164320H116)the Open Fund of Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution (Grant No. KLSPWSEPA04)。
文摘Ephemeral gullies,which are widely developed worldwide and threaten farmlands,have aroused a growing concern.Identifying and mapping gullies are generally considered prerequisites of gully erosion assessment.However,ephemeral gully mapping remains a challenge.In this study,we proposed a flow-directional detection for identifying ephemeral gullies from high-resolution images and digital elevation models(DEMs).Ephemeral gullies exhibit clear linear features in high-resolution images.An edge detection operator was initially used to identify linear features from high-resolution images.Then,according to gully erosion mechanism,the flow-directional detection was designed.Edge images obtained from edge detection and flow directions obtained from DEMs were used to implement the flow-directional detection that detects ephemeral gullies along the flow direction.Results from ten study areas in the Loess Plateau of China showed that ranges of precision,recall,and Fmeasure are 6 o.66%-90.47%,65.74%-94.98%,and63.10%-91.93%,respectively.The proposed method is flexible and can be used with various images and DEMs.However,analysis of the effect of DEM resolution and accuracy showed that DEM resolution only demonstrates a minor effect on the detection results.Conversely,DEM accuracy influences the detection result and is more important than the DEM resolution.The worse the vertical accuracy of DEM,the lower the performance of the flow-directional detection will be.This work is beneficial to research related to monitoring gully erosion and assessing soil loss.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52005167)the Scientific and Technological Research Project in Henan Province(Grant No.202102110266)the Scientific and Technological Research Project in Henan Province(Grant No.212102110235).
文摘Cultivation and hilling are important steps in crop field management and provide an important guarantee of crop quality and quantity.With the aim of addressing how the soil flow direction of a traditional cultivation and hilling machine is difficult to control,and because it is difficult to achieve high ridge soil cultivation,among other issues,the components of the soil flow direction control of a hilling machine was designed.The components of the soil flow direction control consisted of a soil-feeding plough device,spiral knives and guide cover devices,etc.The design and analysis of the guiding parts for the two tools of the soil-feeding plough device and the spiral knife were performed to obtain an appropriate guide wall and helix angle.The guiding principle in the flow direction control components was analyzed.The design of the guide wall adopts the torsional columnar plough surface,and the elementary line angle changes from stable to increasing.The analysis of spiral milling showed that when the spiral angle is large,the milling effect is better.According to the discrete element method,the working part of the machine-soil interaction model was established.EDEM software was used to simulate the control components for the soil flow direction of the hilling machine for compound cutting.The design method with a two-factor comprehensive test was used to study the linear velocity along the outer part of the spiral knife and the influence of the forward velocity of machine of the implement on the soil cultivation effect.The results of the discrete element simulation showed that both the linear velocity along the outer part of the spiral knife and the forward velocity of the machine have extremely significant effects on the transportation of particles to the ridge top and the hilling thickness.Following multiple comparisons of the average hilling thickness with different linear velocities along with the outer spiral knife and different forward velocities of the machine,it is concluded that the performance of the machine is better when the linear velocity along the outer spiral knife is 3.01 m/s and the forward velocity of the machine is 0.7 m/s.The research conclusion had great theoretical value and practical significance for the design of the machine,which worked for cultivation and hilling.
基金the National Natural Science Foundation of China,No. 30670543
文摘BACKGROUND:Neuro-rehabilitative training has been shown to promote motor function recovery in stroke patients,although the underlying mechanisms have not been fully clarified.OBJECTIVE:To investigate the effects of finger movement training on functional connectivity and information flow direction in cerebral motor areas of healthy people using electroencephalogram (EEG).DESIGN,TIME AND SETTING:A self-controlled,observational study was performed at the College of Life Science and Bioengineering,Beijing University of Technology between December 2008 and April 2009.PARTICIPANTS:Nineteen healthy adults,who seldom played musical instruments or keyboards,were included in the present study.METHODS:Specific finger movement training was performed,and all subjects were asked to separately press keys with their left or right hand fingers,according to instructions.The task comprised five sessions of test train test train-test.Thirty-six channel EEG signals were recorded in different test sessions prior to and after training.Data were statistically analyzed using one-way analysis of variance.MAIN OUTCOME MEASURES:The number of effective performances,correct ratio,average response time,average movement time,correlation coefficient between pairs of EEG channels,and information flow direction in motor regions were analyzed and compared between different training sessions.RESULTS:Motor function of all subjects was significantly improved in the third test comparedwith the first test (P〈 0.01).More than 80% of connections were strengthened in the motor-related areas following two training sessions,in particular the primary motor regions under the C4 electrode.Compared to the first test,a greater amount of information flowed from the Cz and Fcz electrodes (corresponding to supplementary motor area) to the C4 electrode in the third test.CONCLUSION:Finger task training increased motor ability in subjects by strengthening connections and changing information flow in the motor areas.These results provided a greater understanding of the mechanisms involved in motor rehabilitation.
基金Key Project of National Natural Science Foundation of China(52237008)Beijing Municipal Education Commission Research Program Funding Project(KM202111232022)。
文摘There are many motors in operation or on standby in nuclear power plants,and the startup of group motors will have a great impact on the voltage of the emergency bus.At present,there is no special or inexpensive software to solve this problem,and the experience of engineers is not accurate enough.Therefore,this paper developed a method and system for the startup calculation of group motors in nuclear power plants and proposed an automatic generation method of circuit topology in nuclear power plants.Each component in the topology was given its unique number,and the component class could be constructed according to its type and upper and lower connections.The subordination and topology relationship of switches,buses,and motors could be quickly generated by the program according to the component class,and the simplified direct power flow algorithm was used to calculate the power flow for the startup of group motors according to the above relationship.Then,whether the bus voltage is in the safe range and whether the voltage exceeds the limit during the startup of the group motor could be judged.The practical example was used to verify the effectiveness of the method.Compared with other professional software,the method has high efficiency and low cost.
基金This project is supported by National Natural Science Foundation of China (No.59235101).
文摘In order to decrease the anisotropy of mechanical properties, the rigid-plastic mechanical model for the forging method with horizontal V-shaped anvil is presented. The forging method, through the change of anvils shape, is able to control fibrous tissue direction, to improve the anisotropy of mechanical properties of axial forgings, to realize uniform forging. Therefore, the forging method can overcome the defect that conventional forging methods produce. The mechanism of the forging method with horizontal V-shaped anvil and the process of metal deformation are analyzed. The agreement of theoretical analysis with experimental study verifies the fact that the forging method with horizontal V-shaped anvil can control effectively the mechanical properties of axial forgings.
文摘The wind turbine has the advantage of operating uninterruptedly, which ensures a constant source of electricity. This investigation includes a clear overview of the wind velocity, the flow direction;the amount of energy reserved, suitable regions for wind turbine installation, etc. The feasibility and possibility of installing a wind energy conversion system for several locations in Bangladesh are analyzed. A brief study of wind characteristics in different locations in Bangladesh is reported. Wind data obtained from the Bangladesh Meteorological Department (BMD) for Mongla, Patuakhali, Kutubdia, and Bhola stations are analyzed through wind rose, frequency distribution, and average wind velocity. The performance of suitable small-scale wind turbines will be assessed in order to confirm the prospect of wind turbines in Bangladesh.
文摘Although several studies have assessed the effects of thinning on water quality,including nitrogen(N)exports,few have examined N-saturated plantations.This study assessed the short-term effect of thinning on N exports from a N-saturated plantation forest in northern Kyushu,western Japan,that was thinned(43%of basal area)during January-March 2012.Water levels at the gauging station were continually measured,and streamwater baseflow and stormflow samples were collected before(2011)and after(2013)forest thinning.Annual precipitation before(2469 mm)and after(2418 mm)forest thinning differed little,and annual water discharge after thinning(1641 mm)was similar to that before thinning(1609 mm).However,direct flow during stormflow periods was higher after thinning(260 mm)than before(153 mm).The concentrations of major ions in stream water did not differ before and after thinning.As a result,the high annual dissolved inorganic N(DIN)exports differed little before(35.8 kg N ha^-1 a^-1)and after(36.5 kg N ha^-1 a^-1)forest thinning.DIN exports during stormflow periods were slightly higher after(12.2 kg N ha^-1 a^-1)than before thinning(10.5 kg N ha^-1 a^-1)and were proportional to the increased direct flow after thinning(561 mm after vs.470 mm before thinning).We concluded that thinning does not affect annual N exports from the N-saturated plantation forest,but it can increase the proportion of N exported during stormflow periods in proportion to increased water volume of direct flow after thinning.
文摘China’s economy has shown signs of a slowdown, as indicated in the newly released third-quarter economic figures.GDP growth in the first three quarters was 9.9 percent, 2.3 percentage points lower than the same period last year.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51276046 and 51506037)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51421063)+2 种基金the China Postdoctoral Science Foundation(Grant No.2016M591526)the Heilongjiang Postdoctoral Fund,China(Grant No.LBH-Z15063)the China Postdoctoral International Exchange Program
文摘Direct numerical simulations(DNSs) of purely elastic turbulence in rectilinear shear flows in a three-dimensional(3D) parallel plate channel were carried out,by which numerical databases were established.Based on the numerical databases,the present paper analyzed the structural and statistical characteristics of the elastic turbulence including flow patterns,the wall effect on the turbulent kinetic energy spectrum,and the local relationship between the flow motion and the microstructures' behavior.Moreover,to address the underlying physical mechanism of elastic turbulence,its generation was presented in terms of the global energy budget.The results showed that the flow structures in elastic turbulence were 3D with spatial scales on the order of the geometrical characteristic length,and vortex tubes were more likely to be embedded in the regions where the polymers were strongly stretched.In addition,the patterns of microstructures' elongation behave like a filament.From the results of the turbulent kinetic energy budget,it was found that the continuous energy releasing from the polymers into the main flow was the main source of the generation and maintenance of the elastic turbulent status.
文摘The Nkoup watershed(10°35’-10°47’E and 5°27’-5°42’N)is a volcanic zone situated in Nun Plain West Cameroon.The high fertility of the soils makes it a strategic agropastoral area where water resources are heavily exploited and used for several purposes.Due to human activities,soils and water resources are deteriorating,giving birth to water pollution and hydromorphological hazards.This work aims to determine the hydromorphometric parameters of the Nkoup watershed so that the data obtained help in the sustainable management of water resources and conservation of soil.To achieve this aim,various data were collected from DEM dataset derived from SRTM and processed in specialized software(QGIS and ArGIS).The simplified hydrological balance was calculated using the upstream approach.The Nkoup watershed has:Axial length L_(ax)=25.8 km,Axial Width W_(ax)=11.1 km,Perimeter P=132.6 km,Area A=173.7 km^(2),Average Altitude Ha=1726.3 m,Compactness Index Icomp=2.8,Relief ratio Rr=3.9 m/km,Circularity ratio Rc=0.1,Elongation ratio R=0.1,Drainage texture ratio Rt=0.6,Drainage density Dd=0.5 km/km^(2).Stream Frequency Fs=0.4,Channel Sinuosity Index CSI=0.8,Stream gradient Sg=0.6 and global slope Index Ig=6.8 m/km.The specific height Difference Ds=89.4 m shows moderate relief.The precipitation and evapotranspiration are unevenly distributed.With P=187.7 mm/an,ETP=953.4 mm/an,Q=4.2 m3/s,R=762.5 mm/an,ETR=832.3 mm/an and I=282.9 mm/an.The Nkoup,36.9 km long,has a sinuous aspect due to the low slope and the high CSI.The piezometric levels vary according to the seasons and the groundwater flow follows the N-S direction as surface flow.
基金supported by the Hellenic Foundation for Research and Innovation(HFRI)under the HFRI Ph.D.Fellowship grant(No.1156)。
文摘This paper proposes a novel fault location method for overhead feeders,which is based on the direct load flow approach.The method is developed in the phase domain to effectively deal with unbalanced network conditions,while it can also handle any type of distributed generation(DG)units without requiring equivalent models.By utilizing the line series parameters and synchronized or unsynchronized voltage and current phasor measurements taken from the sources,the method reliably identifies the most probable faulty sections.With the aid of an index,the exact faulty section among the multiple candidates is determined.Extensive simulation studies for the IEEE 123-bus test feeder demonstrate that the proposed method accu-rately estimates the fault position under numerous short-circuit conditions with varying prefault system loading conditions,fault resistances,and measurement errors.The proposed method is promising for practical applications due to the limited number of required measurement devices as well as the short computation time.
基金supported by the Fundamental Research Funds for the Central Universities of China (No.CHD2011JC012)the National Natural Science Foundation of China(No.51278064)
文摘A wind-vehicle-bridge system can be regarded as an interaction result of wind-bridge interaction, wind-vehicle interaction and vehicle-bridge interaction, which is determined by nature wind, dynamic characteristics of vehicle and bridge structures, interrelationship between bridge and vehicle dynamic properties and so on. Firstly, based on the traffic loading investigation on the expressway bridge within 24 hours a day, all the critical parameters of traffic flow, such as the vehicle type, weight, separation space and speed are all recorded and analyzed to extract its statistical characteristics, which are used to work out random traffic flow simulation program RTF. This RTF program can be embedded with the other general FEM software. Secondly, a dynamic analysis module RTFWVB of the wind-vehicle-bridge coupling vibration under random traffic flow is presented, which can consider arbitrary number of vehicles, multi-lanes and traffic flow direction. Finally, Hangzhou Bay Bridge in China is selected as a numerical example to demonstrate dynamic interaction of the RTFWVB system. The results indicate that the traffic flow direction has just a little influence on bridge dynamic response, that the mean responses are mainly determined by the moving vehicle loads, and that the fluctuating components will increase with the increase of wind speed.
基金Project supported by the National Natural Science Foundation of China(Nos.90815001and11072064)Key Project of Guangxi Science and Technology Lab Center(No.LGZX201101)
文摘An experimental analysis on the subsequent yield-surfaces evolution using multiple specimens is presented for a 45 steel after a prescribed pre-strain loading in three different directions respectively, and the yielding is defined by a designated offsetting strain. The size of the subsequent yield surface is found smaller than the initial yield surface; the negative cross effects are observed in the normal loading direction, its shape is not a Mises circle but has a rather blunt nose in loading direction and flat in the opposite. These results strongly depend on the loading path and the prescribed offset plastic strain. The plastic flow direction to the subsequent yield surface is investigated, and it is found that the plastic flow direction deviates from the normal flow rule. The deviation differs from preloading case to preloading case. And the plastic flow direction would have a larger deviation from the normal of the yield surface, if the subsequent yield was defined by a smaller offset strain. Furthermore, the experiments are simulated using the Chaboche model, and the results show that it can rationally predict yield-surface only when yield is defined by a fairly large offset strain.
文摘In this study,an experiment was performed to clarify the flow field,in which the jets were normally injected into a main supersonic flow surrounded by a porous cavity,and this report figures out interaction between starting shock wave and porous cavity.In the experiment,a porous cavity is attached to a main duct and jets and rods are inserted to the main duct on the porous cavity.To reveal this flow field,the thermal tuft probe was adopted to experimentally investigate the flow in the cavity.In the experiments,the effect of the porous cavity with jets or rods on the flow field is studied by means of visualization of schlieren method with a high speed camera and measurement of cavity flow with thermal tuft probe.As a results,frequency analysis of output of the thermal tuft probe revealed that some clear dominant frequencies were confirmed when the starting shock wave existed around the porous cavity in all cases of jets and rods arrangements.Moreover,visualization of schlieren method with a high speed camera clarified that a starting shock wave had the same dominant frequencies as that of the flow fluctuation in the cavity only around the cavity.
基金supported in part by the Key Project of the Ministry of Education of China (Grant No.209053)the National Natural Science Foundation of China (Grant Nos.10905021 and 10979023)+2 种基金the Zhejiang Provincial Natural Science Foundation of China (Grant No.Y6090210)the Qianjiang Talents Project of Zhejiang Province (Grant No.2010R10102)the Department of Education of Liaoning Province (Grant No.L2010521)
文摘The influence of the density-dependent symmetry energy on the balance energy (Ebal) of directed flow from heavy ion collisions (HICs) at incident energies covered by INDRA and MSU experiments is studied, using the updated version of the ultra- relativistic quantum molecular dynamics (UrQMD) model, especially adapted to low-energy heavy ion collisions (HICs). Four mass-symmetric reactions with total mass numbers between 192 and 394 are chosen for investigating the influence of the symmetry energy on the system-mass dependence of Eual. The results show that the uncertainty in the density dependence of the symmetry potential causes changes of Ebal of the order of several MeV, depending on the type of particle considered. The Ebal of neutrons from HICs is particularly sensitive to the density dependence of the symmetry potential energy, while the system-mass dependence of EbaI of Z = 1 particles is not.