A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw...A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.展开更多
A novel method to measure the flow rate in a wet gas is presented.Due to the presence of liquid,there is a deviation in the measurement of the gas volume flow rate obtained with standard vortex flow-meters.The propose...A novel method to measure the flow rate in a wet gas is presented.Due to the presence of liquid,there is a deviation in the measurement of the gas volume flow rate obtained with standard vortex flow-meters.The proposed method is based on a correction factor determined through the application of an over-reading approach to a bluff body in mist flow.The correction factor is obtained from the slip velocity ratio,i.e.,the ratio of droplet velocity to gas velocity,based on the analysis of the fluid velocity distribution in the pipeline section.It also takes into account relevant theoretical arguments.It is shown that the predicted results fit the experimental results well.展开更多
This study was conducted to investigate the flow field characteristics of right-angled flow passage with various cavities in the typical hydraulic manifold block.A low-speed visualization test rig was developed and th...This study was conducted to investigate the flow field characteristics of right-angled flow passage with various cavities in the typical hydraulic manifold block.A low-speed visualization test rig was developed and the flow field of the right-angled flow passage with different cavity structures was measured using 2D-PIV technique.Numerical model was established to simulate the three-dimensional flow field.Seven eddy viscosity turbulence models were investigated in predicting the flow field by comparing against the particle image relocimetry(PIV)measurement results.By defining the weight error function K,the S-A model was selected as the appropriate turbulence model.Then,a three-factor,three-level response surface numerical test was conducted to investigate the influence of flow passage connection type,cavity diameter and cavity length-diameter ratio on pressure loss.The results show that the Box-Benhnken Design(BBD)model can predict the total pressure loss accurately.The optimal factor level appeared in flow passage connection type II,14.64 mm diameter and 67.53%cavity length-diameter ratio.The total pressure loss decreased by 11.15%relative to the worst factor level,and total pressure loss can be reduced by 64.75%when using an arc transition right-angled flow passage,which indicates a new direction for the optimization design of flow passage in hydraulic manifold blocks.展开更多
Advanced flow measurement and active flow control need the development of new type devices and systems.Micro-electro-mechanical systems(MEMS) technologies become the important and feasible approach for micro transduce...Advanced flow measurement and active flow control need the development of new type devices and systems.Micro-electro-mechanical systems(MEMS) technologies become the important and feasible approach for micro transducers fabrication.This paper introduces research works of MEMS/NEMS Lab in flow measurement sensors and active flow control actuators.Micro sensors include the flexible thermal sensor array,capacitive shear stress sensor and high sensitivity pressure sensor.Micro actuators are the balloon actuator and synthetic jet actuator respectively.Through wind tunnel test,these micro transducers achieve the goals of shear stress and pressure distribution measurement,boundary layer separation control,lift enhancement,etc.And unmanned aerial vehicle(UAV) flight test verifies the ability of maneuver control of micro actuator.In the future work,micro sensor and actuator can be combined into a closed-loop control system to construct aerodynamic smart skin system for aircraft.展开更多
Objective: Vein graft quality control had been traditionally done for more than 20 years with a roller-pump flow measurement (RPFM) in our institute until off-pump coronary artery bypass grafting was introduced as the...Objective: Vein graft quality control had been traditionally done for more than 20 years with a roller-pump flow measurement (RPFM) in our institute until off-pump coronary artery bypass grafting was introduced as the standard technique of myocardial revascularization in the year 2009 in our institute. In this study, the RPFM method was compared with the Transit-time flow measurement (TTFM). Patients and Methods: From February to September 2005, 31 patients (5 females) undergoing CABG in our institute were included into the study. All the patients were operated with cardiopulmonary bypass. In those patients, 27 distal anastomoses were done with the left internal thoracic artery and 99 anastomoses were done with vein grafts. Those 99 vein graft were assessed both, with the RPFM method and TTFM method. Results: CABG could be safely performed in all cases. In all target vessels, the RPFM method overestimated bypass flow compared to the TTFM method, and simple linear regression revealed no correlation between the TTFM measurement and the RPFM measurement (r = 0.08, p = 0.21). There were two cases in which a graft problem could be detected only with TTFM method, even in our small patient cohort. Conclusion: The present study suggests that the TTFM method is clearly superior to the traditional RPFM method and we believe now that TTFM should be performed routinely in all CABG to improve patient care and quality of surgical results.展开更多
The double-threshold method has been widely used in ultrasonic flow measurement to determine time-of-flight(TOF)due to its low cost and ease of implementation.Performance of this method is negatively affected by the c...The double-threshold method has been widely used in ultrasonic flow measurement to determine time-of-flight(TOF)due to its low cost and ease of implementation.Performance of this method is negatively affected by the cycle-skip phenomenon which occurs frequently under inconstant working conditions,especially varied fluid temperature.This paper proposes a method to suppress the phenomenon to facilitate reliable determination of TOF in ultrasonic flow measurement.First,the double-threshold method is used to generate a feature point to segment the signal.Second,based on the correlation coefficient and signal power,judgement factors of individual signal periods are calculated to determine signal onset.Finally,a valid zero crossing which has a constant lag from the onset is selected to determine the TOF.Thus,the cycle-skip phenomenon is suppressed.Two additional modifications are proposed to eliminate the influence of varied signal frequency and low sampling rate.The proposed method was validated by an experiment based on an ultrasonic water flow sensor.Results showed that the frequently appearing cycle-skip phenomenon can be successfully suppressed by the proposed method.展开更多
Photoacoustic Doppler flow measurement based on continuous wave laser excitation owns the merit of clearly presenting the Doppler power spectra.Extending this technique to dual wavelengths can gain the spectral inform...Photoacoustic Doppler flow measurement based on continuous wave laser excitation owns the merit of clearly presenting the Doppler power spectra.Extending this technique to dual wavelengths can gain the spectral information of the flow sample extra to the flow speed information.An experimental system with two laser diodes respectively operated at 405 nm and 660 nm wavelengths is built and the flow measurement with black and red dyed polystyrene beads is performed.The measured Doppler power spectra can vividly reflect the flow speed,the flow direction,as well as the bead color.Since it is straightforward to further apply the same principle to multiple wavelengths,we can expect this type of spectroscopic photoacoustic Doppler flow measurement will be developed in the near future which will be very useful for studying the metabolism of the slowly moving red blood cell inside microvessels.展开更多
The flow structure in the mould of a continuous caster is of key importance for the quality of the final product. The use of most conventional flow measurement techniques is prevented by the high temperature of the li...The flow structure in the mould of a continuous caster is of key importance for the quality of the final product. The use of most conventional flow measurement techniques is prevented by the high temperature of the liquid steel.For a downscaled physical model of the continuous casting process,we present combined measurements of the flow in the mould by Contacfless Inductive Flow Tomography(CIFT),and of the conductivity distribution in the submerged entry nozzle by Mutual Inductance Tomograpliy(MIT).In addition,we summarize an experiment with a magnetic stirrer around the submerged entry nozzle and its effects on the flow in the mould.Some new developments towards a robust implementation of CIFT at a real caster,including the use of pickup coils and gradiometric probes,are also discussed.展开更多
A comparison study on the ultrasonic blood flow estimation methods is carried out in this paper. The methods are divided into two classes-narrowband and wideband techniques.The pulsed Doppler systems and the autocorre...A comparison study on the ultrasonic blood flow estimation methods is carried out in this paper. The methods are divided into two classes-narrowband and wideband techniques.The pulsed Doppler systems and the autocorrelation methods are essentially the narrowband estAnators. They give the results with low velocity resolution and probably the aliased spectrum.The wider the frequency band of the signals, the worse the results. Time domain crosscorrelation technique, wideband makimum likelihood estimation and 2D Fourier transform method are three wideband techniques. The high velocity resolution and the ability of anti-aliasing are shown by these wideband estimation strategies.展开更多
A Kalman filter which estimates unsteady laminar flow in a pipe is implemented on a real-time computing system. The plant model is the optimised finite element model of pipeline dynamics considering unsteady laminar f...A Kalman filter which estimates unsteady laminar flow in a pipe is implemented on a real-time computing system. The plant model is the optimised finite element model of pipeline dynamics considering unsteady laminar friction. A steady-state Kalman filter is built based on the model of pipeline dynamics. Pressure signals at both ends of a target section of a pipe are input to the model of pipeline dynamics, and as an output of the model an estimated pressure signal at a mid-point of the pipe is obtained. Difference between measured and estimated pressure signals at the mid-point is fed back to the model of pipeline dynamics to modify state variables of the model. According to the Kalman filter principle, the state variables of the model are adjusted so that they converge to real values. It is demonstrated that real-time implementation of the Kalman filter is possible with the sampling time of 0.1 ms.展开更多
The purpose of this study was to clarify grid convergence property of three-dimensional measurement-integrated (3D-MI) simulation for a flow behind a square cylinder with Karman vortex street. Measurement-integrated (...The purpose of this study was to clarify grid convergence property of three-dimensional measurement-integrated (3D-MI) simulation for a flow behind a square cylinder with Karman vortex street. Measurement-integrated (MI) simulation is a kind of the observer in the dynamical system theory by using CFD scheme as a mathematical model of the system. In a former study, two-dimensional MI (2D-MI) simulation with a coarse grid system showed a fairly good result in comparison with a 2D ordinary (2D-O) simulation, but the results were degraded with grid refinement. In this study, 3D-MI simulation and three-dimensional ordinary (3D-O) simulation were performed with three grid systems of different grid resolutions, and their grid convergence properties were compared. As a result, all 3D-MI simulations reproduced the vortex shedding frequency identical to that of the experiment, and the flow fields obtained were very close, within 5% difference between the results, while the results of the 3D-O simulations showed variation of the solution under convergence. It is shown that the grid convergence property of 3D-MI simulation is monotonic and better than that of 3D-O simulation, whereas those of 2D-O and 2D-MI simulations for streamwise velocity fluctuation are divergent. The solution of 3D-MI simulation with a relatively coarse grid system properly reproduces the basic three-dimensional structure of the wake flow as well as the drag and lift coefficients.展开更多
Hemodynamical evaluation of a coronary artery lesion is an important diagnostic step to assess its functional impact.Fractional flow reserve(FFR)received a class IA recommendation from the European Society of Cardiolo...Hemodynamical evaluation of a coronary artery lesion is an important diagnostic step to assess its functional impact.Fractional flow reserve(FFR)received a class IA recommendation from the European Society of Cardiology for the assessment of angiographically moderate stenosis.FFR evaluation of coronary artery disease offers improvement of the therapeutic strategy,deferring unnecessary procedures for lesions with a FFR>0.8,improving patients'management and clinical outcome.Post intervention,an optimal FFR>0.9 post stenting should be reached and>0.8 post drug eluting balloons.Non-hyperemic pressure ratio measurements have been validated in previous studies with a common threshold of 0.89.They might overestimate the hemodynamic significance of some lesions but remain useful whenever hyperemic agents are contraindicated.FFR remains the gold standard reference for invasive assessment of ischemia.We illustrate this review with two cases introducing the possibility to estimate also non-invasively FFR from reconstructed 3-D angiograms by quantitative flow ratio.We conclude introducing a hybrid approach to intermediate lesions(DFR 0.85-0.95)potentially maximizing clinical decision from all measurements.展开更多
To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to estab...To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to establish a method for measuring the partial phase flow rate of oil-water two-phase stratified flow in horizontal wells. An experimental work was performed in horizontal oil-water two-phase flow simulation well using combination production logging tool including mini-capacitance sensor and mini-spinner. The combination tool provides a recording of holdup and velocity profiles at five different heights of the borehole cross-section. The effect of total flow rate and water-cut on the response of spinner and capacitive sensor at five measured positions were investigated. The capacitance water holdup interpolation imaging algorithm was used to determine the local fluid property and oil-water interface height, and the measured local fluid speed was combined with the numerical simulation result to establish an optimal calculation model for obtaining the partial phase flow rate of the oil-water two-phase stratified flow in the horizontal well. The calculated flow rates of five measured points are basically consistent with the experimental data, the total flow rate and water holdup from calculation are in agreement with the set values in the experiment too, suggesting that the method has high accuracy.展开更多
In this paper the present authors measured the gas-particle two-phase velocity correlation in sudden expansion gas-particle flows with a phase Doppler particle anemometer (PDPA) and simulated the system behavior by ...In this paper the present authors measured the gas-particle two-phase velocity correlation in sudden expansion gas-particle flows with a phase Doppler particle anemometer (PDPA) and simulated the system behavior by using both a Reynolds-averaged Navier-Stokes (RANS) model and a large-eddy simulation (LES). The results of the measurements yield the axial and radial time-averaged velocities as well as the fluctuation velocities of gas and three particle-size groups (30μm, 50μm, and 95μm) and the gasparticle velocity correlation for 30μm and 50μm particles. From the measurements, theoretical analysis, and simulation, it is found that the two-phase velocity correlation of sudden-expansion flows, like that of jet flows, is less than the gas and particle Reynolds stresses. What distinguishes the two-phase velocity correlations of sudden-expansion flow from those of jet and channel flows is the absence of a clear relationship between the two-phase velocity correlation and particle size in sudden-expansion flows. The measurements, theoretical analysis, and numerical simulation all lead to the above-stated conclusions. Quantitatively, the results of the LES are better than those of the RANS model.展开更多
A retrospective study of flow cytometric measurements on paraffin-embedded tumor specimens from 188 patients with bladder tumor was conducted. The results were analyzed in combination with the morphological variation ...A retrospective study of flow cytometric measurements on paraffin-embedded tumor specimens from 188 patients with bladder tumor was conducted. The results were analyzed in combination with the morphological variation of bladder tumors. It was found that the DNA ploid pottern, degree of infiltration and the multiplicity of bladder tumor were closely related with tumor recurrence, among which the DNA ploid pattern was most significant. In aneuploid bladder tumors the recurrent rate and mean annual recurrence frequency were 76.7% and 1.46, and those in the diploid bladder tumors were 18.7% and 0.33 respectively. Aneuploid was the most indicative parameter of the recurrence in bladder tumors. In addition, according to the DNA ploid pattern and DNA index (DI), the aneuploid tumors in our group were divided into 4 types, namely, tetraploid tumors, npn-euploid with DI(?)1.5, non-euploid tumors with DI>1.5 and two-aneuploid tumors. The results showed that the recurrent rate of tetraploid tumors was relatively lower and it became higher and higher in the following order: non-euploid tumors with DI(?)1.5, non-euploid tumors with DI>1.5, and two-aneuploid tumors. This indicates that there are different biological behaviors in tumors with different ploid pattern. Finally, the correlation between DNA ploid pattern and tumor metastasis was also discussed.展开更多
During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped...During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped chute hydraulics is not simple, because of different flow regimes and importantly because of very-strong interactions between entrained air and turbu- lence. In this study, new air-water flow measurements were conducted in two large-size stepped chute facilities with two step heights in each facility to study experimental distortion caused by scale effects and the soundness of result extrapolation to pro- totypes. Experimental data included distributions of air concentration, air-water flow velocity, bubble frequency, bubble chord length and air-water flow turbulence intensity. For a Froude similitude, the results implied that scale effects were observed in both facilities, although the geometric scaling ratio was only Lr=2 in each case. The selection of the criterion for scale effects is a critical issue. For example, major differences (i.e. scale effects) were observed in terms of bubble chord sizes and turbulence levels al- though little scale effects were seen in terms of void fraction and velocity distributions. Overall the findings emphasize that physical modelling of stepped chutes based upon a Froude similitude is more sensitive to scale effects than classical smooth-invert chute studies, and this is consistent with basic dimensional analysis developed herein.展开更多
Due to piping vibration, fluid pulsation and other environmental disturbances, variations of amplitude and frequency to the raw signals of vortex flowmeter are imposed. It is difficult to extract vortex frequencies wh...Due to piping vibration, fluid pulsation and other environmental disturbances, variations of amplitude and frequency to the raw signals of vortex flowmeter are imposed. It is difficult to extract vortex frequencies which indicate volumetric flowrate from noisy data, especially at low flowrates. Hilbert-Huang transform was adopted to estimate vortex frequency. The noisy raw signal was decomposed into different intrinsic modes by empirical mode decomposition, the time-frequency characteristics of each mode were analyzed, and the vortex frequency was obtained by calculating partial mode’s instantaneous frequency. Experimental results show that the proposed method can estimate the vortex frequency with less than 2% relative error; and in the low flowrate range studied, the denoising ability of Hilbert-Huang transform is markedly better than Fourier based algorithms. These findings reveal that this method is accurate for vortex signal processing and at the same time has strong anti-disturbance ability.展开更多
Vortex street flowmeter has been used in steady flow measurement for about three decades The benefits of this type of flowmeter include high accuracy,good linearty,wide measuring range,and excellent reliability Ho...Vortex street flowmeter has been used in steady flow measurement for about three decades The benefits of this type of flowmeter include high accuracy,good linearty,wide measuring range,and excellent reliability However,in unsteady flow measurement,the pressure disturbance as well as the noise from the system or surrounding can reduce the signal to noise ratio of the flowmeter seriously Aimed to use vortex street flowmeters in unsteady flow measurement,the characteristics of the vortex shedding induced hydrodynamic vibration around the prism bluff body in a vortex street flowmeter are investigated numerically and by expriments The results show that the hydrodynamic vibrations with 180° phase shift occur at the axisymmetric points of the channel around the bluff body The most intense vibration occurs at the points on the lateral faces close to the base of the prism The results provide therefore a useful reference for developing an anti interference vortex flowmeter using the different ial sensing technique.展开更多
Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the req...Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the requirements for the measurement of echo time of flight put forward by the ultrasonic flow measurement are analyzed. A new high-precision time interval measurement algorithm is presented, which combines the pulse counting method with the phase delay interpolation. The pulse counting method is used to ensure a large dynamic measuring range, and a double-edge triggering counter is designed to improve the accuracy and reduce the counting quantization error. The phase delay interpolation is used to reduce the quantization error of pulse counting for further improving the time measurement resolution. Test data show that the systexn for the measurement of the ultrasonic echo time of flight based on this algorithm and implemented on an Field Programmable Gate Army(FleA) needs a relatively short time for measurement, and has a measurement error of less than 105 ps.展开更多
A kind of signal acquisition circuit and the related signal processing method of the capacitanceelectromagnetic flowmeter (EMF) were introduced. The circuit can eliminate the influence of distributed capacitanceon the...A kind of signal acquisition circuit and the related signal processing method of the capacitanceelectromagnetic flowmeter (EMF) were introduced. The circuit can eliminate the influence of distributed capacitanceon the input impedance of the operational amplifier, and greatly improve the input impedance of the detection circuitto overcome the disadvantage of high signal source impedance. The rotating capacitor filter is a signal processingmethod based on the phase-sensitive detection technology. It can extract the weak signal from the strong and widebandbackground noise, so it is very suitable for the processing of capacitive electromagnetic flow signals. Throughthe comparison of the signal amplitude obtained at different flow rates and the comparison of signal spectrumcomponents before and after the filter, the effectiveness of the bootstrap signal acquisition circuit and rotatingcapacitor filtering method is verified.展开更多
基金Supported By Open Fund of Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.
基金supported by the Leading Talent Training Project for Young and Middle-Aged Teacher(A2-0265-22-41).
文摘A novel method to measure the flow rate in a wet gas is presented.Due to the presence of liquid,there is a deviation in the measurement of the gas volume flow rate obtained with standard vortex flow-meters.The proposed method is based on a correction factor determined through the application of an over-reading approach to a bluff body in mist flow.The correction factor is obtained from the slip velocity ratio,i.e.,the ratio of droplet velocity to gas velocity,based on the analysis of the fluid velocity distribution in the pipeline section.It also takes into account relevant theoretical arguments.It is shown that the predicted results fit the experimental results well.
基金Projects(51705446,51890881) supported by the National Natural Science Foundation of China
文摘This study was conducted to investigate the flow field characteristics of right-angled flow passage with various cavities in the typical hydraulic manifold block.A low-speed visualization test rig was developed and the flow field of the right-angled flow passage with different cavity structures was measured using 2D-PIV technique.Numerical model was established to simulate the three-dimensional flow field.Seven eddy viscosity turbulence models were investigated in predicting the flow field by comparing against the particle image relocimetry(PIV)measurement results.By defining the weight error function K,the S-A model was selected as the appropriate turbulence model.Then,a three-factor,three-level response surface numerical test was conducted to investigate the influence of flow passage connection type,cavity diameter and cavity length-diameter ratio on pressure loss.The results show that the Box-Benhnken Design(BBD)model can predict the total pressure loss accurately.The optimal factor level appeared in flow passage connection type II,14.64 mm diameter and 67.53%cavity length-diameter ratio.The total pressure loss decreased by 11.15%relative to the worst factor level,and total pressure loss can be reduced by 64.75%when using an arc transition right-angled flow passage,which indicates a new direction for the optimization design of flow passage in hydraulic manifold blocks.
基金National Natural Science Foundation of China (No. 90305017No. 50775188No. 51105317)
文摘Advanced flow measurement and active flow control need the development of new type devices and systems.Micro-electro-mechanical systems(MEMS) technologies become the important and feasible approach for micro transducers fabrication.This paper introduces research works of MEMS/NEMS Lab in flow measurement sensors and active flow control actuators.Micro sensors include the flexible thermal sensor array,capacitive shear stress sensor and high sensitivity pressure sensor.Micro actuators are the balloon actuator and synthetic jet actuator respectively.Through wind tunnel test,these micro transducers achieve the goals of shear stress and pressure distribution measurement,boundary layer separation control,lift enhancement,etc.And unmanned aerial vehicle(UAV) flight test verifies the ability of maneuver control of micro actuator.In the future work,micro sensor and actuator can be combined into a closed-loop control system to construct aerodynamic smart skin system for aircraft.
文摘Objective: Vein graft quality control had been traditionally done for more than 20 years with a roller-pump flow measurement (RPFM) in our institute until off-pump coronary artery bypass grafting was introduced as the standard technique of myocardial revascularization in the year 2009 in our institute. In this study, the RPFM method was compared with the Transit-time flow measurement (TTFM). Patients and Methods: From February to September 2005, 31 patients (5 females) undergoing CABG in our institute were included into the study. All the patients were operated with cardiopulmonary bypass. In those patients, 27 distal anastomoses were done with the left internal thoracic artery and 99 anastomoses were done with vein grafts. Those 99 vein graft were assessed both, with the RPFM method and TTFM method. Results: CABG could be safely performed in all cases. In all target vessels, the RPFM method overestimated bypass flow compared to the TTFM method, and simple linear regression revealed no correlation between the TTFM measurement and the RPFM measurement (r = 0.08, p = 0.21). There were two cases in which a graft problem could be detected only with TTFM method, even in our small patient cohort. Conclusion: The present study suggests that the TTFM method is clearly superior to the traditional RPFM method and we believe now that TTFM should be performed routinely in all CABG to improve patient care and quality of surgical results.
基金Project supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51821093)。
文摘The double-threshold method has been widely used in ultrasonic flow measurement to determine time-of-flight(TOF)due to its low cost and ease of implementation.Performance of this method is negatively affected by the cycle-skip phenomenon which occurs frequently under inconstant working conditions,especially varied fluid temperature.This paper proposes a method to suppress the phenomenon to facilitate reliable determination of TOF in ultrasonic flow measurement.First,the double-threshold method is used to generate a feature point to segment the signal.Second,based on the correlation coefficient and signal power,judgement factors of individual signal periods are calculated to determine signal onset.Finally,a valid zero crossing which has a constant lag from the onset is selected to determine the TOF.Thus,the cycle-skip phenomenon is suppressed.Two additional modifications are proposed to eliminate the influence of varied signal frequency and low sampling rate.The proposed method was validated by an experiment based on an ultrasonic water flow sensor.Results showed that the frequently appearing cycle-skip phenomenon can be successfully suppressed by the proposed method.
基金This work is supported by the National Natural Science Foundation of China(Grant No.11774256)the Natural Science Foundation of Guangdong Province(Grant No.2018B03031104).
文摘Photoacoustic Doppler flow measurement based on continuous wave laser excitation owns the merit of clearly presenting the Doppler power spectra.Extending this technique to dual wavelengths can gain the spectral information of the flow sample extra to the flow speed information.An experimental system with two laser diodes respectively operated at 405 nm and 660 nm wavelengths is built and the flow measurement with black and red dyed polystyrene beads is performed.The measured Doppler power spectra can vividly reflect the flow speed,the flow direction,as well as the bead color.Since it is straightforward to further apply the same principle to multiple wavelengths,we can expect this type of spectroscopic photoacoustic Doppler flow measurement will be developed in the near future which will be very useful for studying the metabolism of the slowly moving red blood cell inside microvessels.
文摘The flow structure in the mould of a continuous caster is of key importance for the quality of the final product. The use of most conventional flow measurement techniques is prevented by the high temperature of the liquid steel.For a downscaled physical model of the continuous casting process,we present combined measurements of the flow in the mould by Contacfless Inductive Flow Tomography(CIFT),and of the conductivity distribution in the submerged entry nozzle by Mutual Inductance Tomograpliy(MIT).In addition,we summarize an experiment with a magnetic stirrer around the submerged entry nozzle and its effects on the flow in the mould.Some new developments towards a robust implementation of CIFT at a real caster,including the use of pickup coils and gradiometric probes,are also discussed.
文摘A comparison study on the ultrasonic blood flow estimation methods is carried out in this paper. The methods are divided into two classes-narrowband and wideband techniques.The pulsed Doppler systems and the autocorrelation methods are essentially the narrowband estAnators. They give the results with low velocity resolution and probably the aliased spectrum.The wider the frequency band of the signals, the worse the results. Time domain crosscorrelation technique, wideband makimum likelihood estimation and 2D Fourier transform method are three wideband techniques. The high velocity resolution and the ability of anti-aliasing are shown by these wideband estimation strategies.
文摘A Kalman filter which estimates unsteady laminar flow in a pipe is implemented on a real-time computing system. The plant model is the optimised finite element model of pipeline dynamics considering unsteady laminar friction. A steady-state Kalman filter is built based on the model of pipeline dynamics. Pressure signals at both ends of a target section of a pipe are input to the model of pipeline dynamics, and as an output of the model an estimated pressure signal at a mid-point of the pipe is obtained. Difference between measured and estimated pressure signals at the mid-point is fed back to the model of pipeline dynamics to modify state variables of the model. According to the Kalman filter principle, the state variables of the model are adjusted so that they converge to real values. It is demonstrated that real-time implementation of the Kalman filter is possible with the sampling time of 0.1 ms.
文摘The purpose of this study was to clarify grid convergence property of three-dimensional measurement-integrated (3D-MI) simulation for a flow behind a square cylinder with Karman vortex street. Measurement-integrated (MI) simulation is a kind of the observer in the dynamical system theory by using CFD scheme as a mathematical model of the system. In a former study, two-dimensional MI (2D-MI) simulation with a coarse grid system showed a fairly good result in comparison with a 2D ordinary (2D-O) simulation, but the results were degraded with grid refinement. In this study, 3D-MI simulation and three-dimensional ordinary (3D-O) simulation were performed with three grid systems of different grid resolutions, and their grid convergence properties were compared. As a result, all 3D-MI simulations reproduced the vortex shedding frequency identical to that of the experiment, and the flow fields obtained were very close, within 5% difference between the results, while the results of the 3D-O simulations showed variation of the solution under convergence. It is shown that the grid convergence property of 3D-MI simulation is monotonic and better than that of 3D-O simulation, whereas those of 2D-O and 2D-MI simulations for streamwise velocity fluctuation are divergent. The solution of 3D-MI simulation with a relatively coarse grid system properly reproduces the basic three-dimensional structure of the wake flow as well as the drag and lift coefficients.
文摘Hemodynamical evaluation of a coronary artery lesion is an important diagnostic step to assess its functional impact.Fractional flow reserve(FFR)received a class IA recommendation from the European Society of Cardiology for the assessment of angiographically moderate stenosis.FFR evaluation of coronary artery disease offers improvement of the therapeutic strategy,deferring unnecessary procedures for lesions with a FFR>0.8,improving patients'management and clinical outcome.Post intervention,an optimal FFR>0.9 post stenting should be reached and>0.8 post drug eluting balloons.Non-hyperemic pressure ratio measurements have been validated in previous studies with a common threshold of 0.89.They might overestimate the hemodynamic significance of some lesions but remain useful whenever hyperemic agents are contraindicated.FFR remains the gold standard reference for invasive assessment of ischemia.We illustrate this review with two cases introducing the possibility to estimate also non-invasively FFR from reconstructed 3-D angiograms by quantitative flow ratio.We conclude introducing a hybrid approach to intermediate lesions(DFR 0.85-0.95)potentially maximizing clinical decision from all measurements.
基金Supported by National Natural Science Foundation of China(41474115)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)Educational Commission of Hubei Province of China(D20141302)
文摘To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to establish a method for measuring the partial phase flow rate of oil-water two-phase stratified flow in horizontal wells. An experimental work was performed in horizontal oil-water two-phase flow simulation well using combination production logging tool including mini-capacitance sensor and mini-spinner. The combination tool provides a recording of holdup and velocity profiles at five different heights of the borehole cross-section. The effect of total flow rate and water-cut on the response of spinner and capacitive sensor at five measured positions were investigated. The capacitance water holdup interpolation imaging algorithm was used to determine the local fluid property and oil-water interface height, and the measured local fluid speed was combined with the numerical simulation result to establish an optimal calculation model for obtaining the partial phase flow rate of the oil-water two-phase stratified flow in the horizontal well. The calculated flow rates of five measured points are basically consistent with the experimental data, the total flow rate and water holdup from calculation are in agreement with the set values in the experiment too, suggesting that the method has high accuracy.
基金supported by the National Natural Science Foundation of China (50606026 and 50736006)
文摘In this paper the present authors measured the gas-particle two-phase velocity correlation in sudden expansion gas-particle flows with a phase Doppler particle anemometer (PDPA) and simulated the system behavior by using both a Reynolds-averaged Navier-Stokes (RANS) model and a large-eddy simulation (LES). The results of the measurements yield the axial and radial time-averaged velocities as well as the fluctuation velocities of gas and three particle-size groups (30μm, 50μm, and 95μm) and the gasparticle velocity correlation for 30μm and 50μm particles. From the measurements, theoretical analysis, and simulation, it is found that the two-phase velocity correlation of sudden-expansion flows, like that of jet flows, is less than the gas and particle Reynolds stresses. What distinguishes the two-phase velocity correlations of sudden-expansion flow from those of jet and channel flows is the absence of a clear relationship between the two-phase velocity correlation and particle size in sudden-expansion flows. The measurements, theoretical analysis, and numerical simulation all lead to the above-stated conclusions. Quantitatively, the results of the LES are better than those of the RANS model.
文摘A retrospective study of flow cytometric measurements on paraffin-embedded tumor specimens from 188 patients with bladder tumor was conducted. The results were analyzed in combination with the morphological variation of bladder tumors. It was found that the DNA ploid pottern, degree of infiltration and the multiplicity of bladder tumor were closely related with tumor recurrence, among which the DNA ploid pattern was most significant. In aneuploid bladder tumors the recurrent rate and mean annual recurrence frequency were 76.7% and 1.46, and those in the diploid bladder tumors were 18.7% and 0.33 respectively. Aneuploid was the most indicative parameter of the recurrence in bladder tumors. In addition, according to the DNA ploid pattern and DNA index (DI), the aneuploid tumors in our group were divided into 4 types, namely, tetraploid tumors, npn-euploid with DI(?)1.5, non-euploid tumors with DI>1.5 and two-aneuploid tumors. The results showed that the recurrent rate of tetraploid tumors was relatively lower and it became higher and higher in the following order: non-euploid tumors with DI(?)1.5, non-euploid tumors with DI>1.5, and two-aneuploid tumors. This indicates that there are different biological behaviors in tumors with different ploid pattern. Finally, the correlation between DNA ploid pattern and tumor metastasis was also discussed.
基金Project supported by the National Council for Science and Tech-nology of Mexico (CONACYT)
文摘During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped chute hydraulics is not simple, because of different flow regimes and importantly because of very-strong interactions between entrained air and turbu- lence. In this study, new air-water flow measurements were conducted in two large-size stepped chute facilities with two step heights in each facility to study experimental distortion caused by scale effects and the soundness of result extrapolation to pro- totypes. Experimental data included distributions of air concentration, air-water flow velocity, bubble frequency, bubble chord length and air-water flow turbulence intensity. For a Froude similitude, the results implied that scale effects were observed in both facilities, although the geometric scaling ratio was only Lr=2 in each case. The selection of the criterion for scale effects is a critical issue. For example, major differences (i.e. scale effects) were observed in terms of bubble chord sizes and turbulence levels al- though little scale effects were seen in terms of void fraction and velocity distributions. Overall the findings emphasize that physical modelling of stepped chutes based upon a Froude similitude is more sensitive to scale effects than classical smooth-invert chute studies, and this is consistent with basic dimensional analysis developed herein.
基金Project(20030335058) supported by the Special Research Fund for the Doctoral Programof Higher Education of China
文摘Due to piping vibration, fluid pulsation and other environmental disturbances, variations of amplitude and frequency to the raw signals of vortex flowmeter are imposed. It is difficult to extract vortex frequencies which indicate volumetric flowrate from noisy data, especially at low flowrates. Hilbert-Huang transform was adopted to estimate vortex frequency. The noisy raw signal was decomposed into different intrinsic modes by empirical mode decomposition, the time-frequency characteristics of each mode were analyzed, and the vortex frequency was obtained by calculating partial mode’s instantaneous frequency. Experimental results show that the proposed method can estimate the vortex frequency with less than 2% relative error; and in the low flowrate range studied, the denoising ability of Hilbert-Huang transform is markedly better than Fourier based algorithms. These findings reveal that this method is accurate for vortex signal processing and at the same time has strong anti-disturbance ability.
基金This project is supported by National Natural Science Foundation of China(No.59835160).
文摘Vortex street flowmeter has been used in steady flow measurement for about three decades The benefits of this type of flowmeter include high accuracy,good linearty,wide measuring range,and excellent reliability However,in unsteady flow measurement,the pressure disturbance as well as the noise from the system or surrounding can reduce the signal to noise ratio of the flowmeter seriously Aimed to use vortex street flowmeters in unsteady flow measurement,the characteristics of the vortex shedding induced hydrodynamic vibration around the prism bluff body in a vortex street flowmeter are investigated numerically and by expriments The results show that the hydrodynamic vibrations with 180° phase shift occur at the axisymmetric points of the channel around the bluff body The most intense vibration occurs at the points on the lateral faces close to the base of the prism The results provide therefore a useful reference for developing an anti interference vortex flowmeter using the different ial sensing technique.
基金supported by the National 863 Program(No.2008AA042207)
文摘Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the requirements for the measurement of echo time of flight put forward by the ultrasonic flow measurement are analyzed. A new high-precision time interval measurement algorithm is presented, which combines the pulse counting method with the phase delay interpolation. The pulse counting method is used to ensure a large dynamic measuring range, and a double-edge triggering counter is designed to improve the accuracy and reduce the counting quantization error. The phase delay interpolation is used to reduce the quantization error of pulse counting for further improving the time measurement resolution. Test data show that the systexn for the measurement of the ultrasonic echo time of flight based on this algorithm and implemented on an Field Programmable Gate Army(FleA) needs a relatively short time for measurement, and has a measurement error of less than 105 ps.
文摘A kind of signal acquisition circuit and the related signal processing method of the capacitanceelectromagnetic flowmeter (EMF) were introduced. The circuit can eliminate the influence of distributed capacitanceon the input impedance of the operational amplifier, and greatly improve the input impedance of the detection circuitto overcome the disadvantage of high signal source impedance. The rotating capacitor filter is a signal processingmethod based on the phase-sensitive detection technology. It can extract the weak signal from the strong and widebandbackground noise, so it is very suitable for the processing of capacitive electromagnetic flow signals. Throughthe comparison of the signal amplitude obtained at different flow rates and the comparison of signal spectrumcomponents before and after the filter, the effectiveness of the bootstrap signal acquisition circuit and rotatingcapacitor filtering method is verified.