期刊文献+
共找到6,401篇文章
< 1 2 250 >
每页显示 20 50 100
A new evolutional model for institutional field knowledge flow network
1
作者 Jinzhong Guo Kai Wang +1 位作者 Xueqin Liao Xiaoling Liu 《Journal of Data and Information Science》 CSCD 2024年第1期101-123,共23页
Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose... Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units. 展开更多
关键词 Knowledge flow networks Evolutionary mechanism BA model Knowledge units
下载PDF
Application of Stochastic Fracture Network with Numerical Fluid Flow Simulations to Groundwater Flow Modeling in Fractured Rocks
2
作者 Wang Mingyu The University of Arizona, Tucson, Arizona, USA 85721 Department of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083Chen Jinsong Wan Li Department of Water Resources and Environmental Engineering 《Journal of China University of Geosciences》 SCIE CSCD 2001年第3期240-248,共9页
The continuum approach in fluid flow modeling is generally applied to porous geological media, but has limited applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely dis... The continuum approach in fluid flow modeling is generally applied to porous geological media, but has limited applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely distributed in the matrix, it may be difficult or erroneous to use a porous medium fluid flow model with continuum assumptions to describe the fluid flow in fractured rocks at small or even large field scales. A discrete fracture fluid flow approach incorporating a stochastic fracture network with numerical fluid flow simulations could have the capability of capturing fluid flow behaviors such as inhomogeneity and anisotropy while reflecting the changes of hydraulic features at different scales. Moreover, this approach can be implemented to estimate the size of the representative elementary volume (REV) in order to find out the scales at which a porous medium flow model could be applied, and then to determine the hydraulic conductivity tensor for fractured rocks. The following topics are focused on in this study: (a) conceptual discrete fracture fluid flow modeling incorporating a stochastic fracture network with numerical flow simulations; (b) estimation of REV and hydraulic conductivity tensor for fractured rocks utilizing a stochastic fracture network with numerical fluid flow simulations; (c) investigation of the effect of fracture orientation and density on the hydraulic conductivity and REV by implementing a stochastic fracture network with numerical fluid flow simulations, and (d) fluid flow conceptual models accounting for major and minor fractures in the 2 D or 3 D flow fields incorporating a stochastic fracture network with numerical fluid flow simulations. 展开更多
关键词 discrete fracture fluid flow approach fractured rocks hydraulic conductivity tensor major fractures minor fractures numerical fluid flow simulations representative elementary volume stochastic fracture network.
下载PDF
Full Dynamic Model for Liquid Sloshing Simulation in Cylindrical Tank Shape
3
作者 Omar Noui Mohamed Bouazara Marc J. Richard 《World Journal of Mechanics》 2024年第4期55-72,共18页
This study presents a comprehensive full dynamic model designed for simulating liquid sloshing behavior within cylindrical tank structures. The model employs a discretization approach, representing the liquid as a net... This study presents a comprehensive full dynamic model designed for simulating liquid sloshing behavior within cylindrical tank structures. The model employs a discretization approach, representing the liquid as a network of interconnected spring-damper-mass systems. Key aspects include the adaptation of liquid discretization techniques to cylindrical lateral cross-sections and the calculation of stiffness and damping coefficients. External forces, simulating various vehicle maneuvers, are also integrated into the model. The resulting system of equations is solved using Maple Software with the Runge-Kutta-Fehlberg method. This model enables accurate prediction of liquid displacement and pressure forces, offering valuable insights for tank design and fluid dynamics applications. Ongoing refinement aims to broaden its applicability across different liquid types and tank geometries. 展开更多
关键词 Fluid-Structure Interaction Equivalent Mechanical model Liquid Discretization Spring-Mass model Spring-Mass network Liquid simulation
下载PDF
Flow field simulation and establishment for mathematical models of flow area of spool valve with sloping U-shape notch machined by different methods 被引量:10
4
作者 王兆强 顾临怡 +2 位作者 冀宏 陈家旺 李林 《Journal of Central South University》 SCIE EI CAS 2014年第1期140-150,共11页
Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape not... Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character. 展开更多
关键词 spool valve flow field simulation flow area steady state flow force mathematical model sloping U-shape notch
下载PDF
Multi-layer Tectonic Model for Intraplate Deformation and Plastic-Flow Network in the Asian Continental Lithosphere 被引量:4
5
作者 Wang Shengzu Institute of Geology, State Seismological Bureau, Beijing Liu Linqun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1993年第3期247-271,共25页
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c... In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation. 展开更多
关键词 Continental lithosphere tectonic deformation multi-layer tectonic model large-scale seismic belt seismic network plastic flow network
下载PDF
Multiple car-following model of traffic flow and numerical simulation 被引量:5
6
作者 彭光含 孙棣华 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第12期5420-5430,共11页
On the basis of the full velocity difference (FVD) model, an improved multiple car-following (MCF) model is proposed by taking into account multiple information inputs from preceding vehicles. The linear stability... On the basis of the full velocity difference (FVD) model, an improved multiple car-following (MCF) model is proposed by taking into account multiple information inputs from preceding vehicles. The linear stability condition of the model is obtained by using the linear stability theory. Through nonlinear analysis, a modified Korteweg-de Vries equation is constructed and solved. The traffic jam can thus be described by the klnk-antikink soliton solution for the mKdV equation. The improvement of this new model over the previous ones lies in the fact that it not only theoretically retains many strong points of the previous ones, but also performs more realistically than others in the dynamical evolution of congestion. Furthermore, numerical simulation of traffic dynamics shows that the proposed model can avoid the disadvantage of negative velocity that occurs at small sensitivity coefficients λ in the FVD model by adjusting the information on the multiple leading vehicles. No collision occurs and no unrealistic deceleration appears in the improved model. 展开更多
关键词 traffic flow optimal velocity model numerical simulation
下载PDF
A COUPLED MODEL FOR MUILTIPHASE FLUID FLOW AND SEDIMENTATION DEFORMATION IN OIL RESERVOIR AND ITS NUMERICAL SIMULATION 被引量:3
7
作者 冉启全 顾小芸 李士伦 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1997年第3期264-272,共9页
A mathematical model for coupled multiphase fluid flow and sedi- mentation deformation is developed based on fluid-solid interaction mechanism.A finite difference-finite element numerical approach is presented.The res... A mathematical model for coupled multiphase fluid flow and sedi- mentation deformation is developed based on fluid-solid interaction mechanism.A finite difference-finite element numerical approach is presented.The results of an example show that the fluid-solid coupled effect has great influence on multiphase fluid flow and reservoir recovery performances,and the coupled model has practical significance for oilfield development. 展开更多
关键词 RESERVOIR multiphase flow solid deformation coupled model numerical simulation
下载PDF
NUMERICAL SIMULATION OF WET STEAM CONDENSING FLOW WITH AN EULERIAN/EULERIAN MODEL 被引量:3
8
作者 Li LiangFeng ZhenpingLi GuojunState Key Laboratory of Multiphase Flowin Power Engineering,Xi’ an Jiaotong University,XI’ an 710049, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第2期156-159,共4页
Wet steam condensing flow in low-pressure steam turbine leads to efficiencylosses and blade erosions. In order to investigate this problem by numerical approach, anEulerian/Eulerian model has been developed, in which ... Wet steam condensing flow in low-pressure steam turbine leads to efficiencylosses and blade erosions. In order to investigate this problem by numerical approach, anEulerian/Eulerian model has been developed, in which the wet steam is regarded as mixture comprisingtwo coupled systems: the vapor phase and the liquid phase. These two systems are both described byconservation equations. High resolution TVD scheme is employed to capture condensing phenomena inwet steam flow. This model has been validated by numerical simulations of condensing flows in 1D and2D nozzles. Compared with experimental data, a good agreement is observed. This Eulerian/Eulerianmodel can be extended to 3D calculation of condensing flow. 展开更多
关键词 wet steam condensing flow numerical simulation eulerian/eulerian model
下载PDF
Numerical simulation of flow around square cylinder using different low-Reynolds number turbulence models 被引量:3
9
作者 张泠 周军莉 +2 位作者 陈晓春 兰丽 张楠 《Journal of Central South University of Technology》 EI 2008年第4期564-568,共5页
ABE-KONDOH-NAGANO,ABID,YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged u... ABE-KONDOH-NAGANO,ABID,YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged unsteady flow field.Meanwhile,drag and lift coefficients of the four different low-Reynolds number turbulence models were analyzed.The simulated results of YANG-SHIH model are close to the large eddy simulation results and experimental results,and they are significantly better than those of ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMR models.The modification of the generation of turbulence kinetic energy is the key factor to a successful simulation for YANG-SHIH model,while the correction of the turbulence near the wall has minor influence on the simulation results.For ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMA models satisfactory simulation results cannot be obtained due to lack of the modification of the generation of turbulence kinetic energy.With the joint force of wall function and the turbulence models with the adoption of corrected swirl stream,flow around a square cylinder can be fully simulated with less grids by the near-wall. 展开更多
关键词 low-Reynolds number turbulence model flow around square cylinder numerical simulation
下载PDF
A traffic flow lattice model considering relative current influence and its numerical simulation 被引量:1
10
作者 孙棣华 田川 刘卫宁 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期241-246,共6页
Based on Xue's lattice model, an extended lattice model is proposed by considering the relative current information about next-nearest-neighbour sites ahead. The linear stability condition of the presented model is o... Based on Xue's lattice model, an extended lattice model is proposed by considering the relative current information about next-nearest-neighbour sites ahead. The linear stability condition of the presented model is obtained by employing the linear stability theory. The density wave is investigated analytically with the perturbation method. The results show that the occurrence of traffic jamming transitions can be described by the kink-antikink solution of the modified Korteweg-de Vries (mKdV) equation. The simulation results are in good agreement with the analytical results, showing that the stability of traffic flow can be enhanced when the relative current of next-nearest-neighbour sites ahead is considered. 展开更多
关键词 traffic flow relative current lattice model numerical simulation
下载PDF
3D Visual Plant Models in Computational Fluid Dynamics Simulation of Ambient Wind Flow around an Isolated Tree 被引量:2
11
作者 王宇荣 付海明 《Journal of Donghua University(English Edition)》 EI CAS 2017年第2期304-309,共6页
Plants can reduce the velocity of wind and wind erosion and prevent the movement of sand.But it may be extremely difficult to measure directly the aerodynamic characteristics of the airflow near the real vegetation in... Plants can reduce the velocity of wind and wind erosion and prevent the movement of sand.But it may be extremely difficult to measure directly the aerodynamic characteristics of the airflow near the real vegetation in field experiments on account of restriction by many objective factors.Therefore,numerous investigations have been carried out to study the efficiency of windbreaks by conducting wind tunnel experiments on simulated models or using computational fluid dynamics(CFD) simulation instead of field measurements.Plant models are simplified at some level to be used for numerical simulation in existing literatures.It is a little distortion of leaves in details if the tree canopy is regarded as a whole region which can have a certain influence on the CFD simulation.Hence,one modeling approach that combines Visual Basic for applications(VBA) and computer aided design(CAD) technology is proposed to design 3D virtual plant models.The tree models used for numerical simulation of wind flow around trees are more lifelike.In addition,this method can be applied for creating a 3D virtual vegetation library.It is also more convenient to get the diversified biological indicators by digital plants in computer. 展开更多
关键词 plant model virtual organ SKELETON wind flow numerical simulation
下载PDF
Mathematical Modeling,Field Calibration and Numerical Simulation of Low-Speed Mixed Traffic Flow in Cities 被引量:1
12
作者 Doctoral Candidate: Feng SuweiAdvisor: Prof. Dai Shiqiang 《Advances in Manufacturing》 SCIE CAS 1998年第2期86-88,共3页
Withtherapiddevelopmentoftransportationandautomobileindustry,theconflictbetweenmotormanufactureandhighwaycon... Withtherapiddevelopmentoftransportationandautomobileindustry,theconflictbetweenmotormanufactureandhighwayconstructionbecomess... 展开更多
关键词 low speed mixed traffic flow in cities mathematical modeling numerical simulation field calibration vehicular parking traffic light control
下载PDF
Numerical Simulation of Blood Flow in Aorta with Dilation:A Comparison between Laminar and LES Modeling Methods 被引量:1
13
作者 Lijian Xu Tianyang Yang +3 位作者 Lekang Yin Ye Kong Yuri Vassilevski Fuyou Liang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第8期509-526,共18页
Computational modeling methods have been increasingly employed to quantify aortic hemodynamic parameters that are challenging to in vivo measurements but important for the diagnosis/treatment of aortic disease.Althoug... Computational modeling methods have been increasingly employed to quantify aortic hemodynamic parameters that are challenging to in vivo measurements but important for the diagnosis/treatment of aortic disease.Although the presence of turbulence-like behaviors of blood flow in normal or diseased aorta has long been confirmed,the majority of existing computational model studies adopted the laminar flow assumption(LFA)in the treatment of sub-grid flow variables.So far,it remains unclear whether LFA would significantly compromise the reliability of hemodynamic simulation.In the present study,we addressed the issue in the context of a specific aortopathy,namely aortic dilation,which is usually accompanied by disturbed flow patterns.Three patient-specific aortas with treated/untreated dilation of the ascending segment were investigated,and their geometrical models were reconstructed from computed tomography angiographic images,with the boundary conditions being prescribed based on flow velocity information measured in vivo with the phase contrast magnetic resonance imaging technique.For the modeling of blood flow,apart from the traditional LFA-based method in which sub-grid flow dynamics is ignored,the large eddy simulation(LES)method capable of incorporating the dissipative energy loss induced by turbulent eddies at the sub-grid level,was adopted and taken as a reference for examining the performance of the LFA-based method.Obtained results showed that the simulated large-scale flow patterns with the two methods had high similarity,both agreeing well with in vivo measurements,although locally large between-method discrepancies in computed hemodynamic quantities existed in regions with high intensity of flow turbulence.Quantitatively,a switch from the LES to the LFAbased modeling method led to mild(<6%)changes in computed space-averaged wall shear stress metrics(i.e.,SA-TAWSS,SA-OSI)in the ascending aortic segment where intensive vortex evolution accompanied by high statistical Reynolds stress was observed.In addition,comparisons among the three aortas revealed that the treatment status of aortic dilation or the concomitant presence of aortic valve disease,despite its remarkable influence on flow patterns in the ascending aortic segment,did not significantly affect the degrees of discrepancies between the two modeling methods in predicting SA-TAWSS and SA-OSI.These findings suggest that aortic dilation per se does not induce strong flow turbulence that substantially negates the validity of LFA-based modeling,especially in simulating macro-scale hemodynamic features. 展开更多
关键词 Blood flow aortic dilation computational modeling turbulence laminar flow assumption large eddy simulation
下载PDF
Debris flow simulation 2D(DFS 2D):Numerical modelling of debris flows and calibration of friction parameters 被引量:1
14
作者 Minu Treesa Abraham Neelima Satyam +1 位作者 Biswajeet Pradhan Hongling Tian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1747-1760,共14页
Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster managem... Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster management perspective.This study presents a numerical model called debris flow simulation 2D(DFS 2D)and applicability of the proposed model is investigated through the values of the model parameters used for the reproduction of an occurred debris flow at Yindongzi gully in China on 13 August 2010.The model can be used to simulate debris flows using three different rheologies and has a userfriendly interface for providing the inputs.Using DFS 2D,flow parameters can be estimated with respect to space and time.The values of the flow resistance parameters of model,dry-Coulomb and turbulent friction,were calibrated through the back analysis and the values obtained are 0.1 and 1000 m/s^(2),respectively.Two new methods of calibration are proposed in this study,considering the crosssectional area of flow and topographical changes induced by the debris flow.The proposed methods of calibration provide an effective solution to the cumulative errors induced by coarse-resolution digital elevation models(DEMs)in numerical modelling of debris flows.The statistical indices such as Willmott's index of agreement,mean-absolute-error,and normalized-root-mean-square-error of the calibrated model are 0.5,1.02 and 1.44,respectively.The comparison between simulated and observed values of topographic changes indicates that DFS 2D provides satisfactory results and can be used for dynamic modelling of debris flows. 展开更多
关键词 Debris flows Numerical model RHEOLOGY Debris flow simulation 2D(DFS 2D)
下载PDF
Validation of the RANS-SOM Combustion Model Using Direct Numerical Simulation of Incompressible Turbulent Reacting Flows 被引量:1
15
作者 王方 许春晓 周力行 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第5期679-685,共7页
The second-order moment combustion model, proposed by the authors is validated using the direct numerical simulation (DNS) of incompressible turbulent reacting channel flows. The instantaneous DNS results show the n... The second-order moment combustion model, proposed by the authors is validated using the direct numerical simulation (DNS) of incompressible turbulent reacting channel flows. The instantaneous DNS results show the near-wall strip structures of concentration and temperature fluctuations. The DNS statistical results give the budget of the terms in the correlation equations, showing that the production and dissipation terms are most important. The DNS statistical data are used to validate the closure model in RANS second-order moment (SOM) combustion model. It is found that the simulated diffusion and production terms are in agreement with the DNS data in most flow regions, except in the near-wall region, where the near-wall modification should be made, and the closure model for the dissipation term needs further improvement. The algebraic second-order moment (ASOM) combustion model is well validated by DNS. 展开更多
关键词 second-order moment combustion model direct numerical simulation incompressible reacting flows
下载PDF
AN EXTENDED k-ε MODEL FOR NUMERICAL SIMULATION OF WIND FLOW AROUND BUILDINGS
16
作者 陈水福 孙炳楠 唐锦春 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第1期95-100,共6页
It is assumed in this paper that for a high Reynolds number nearly homogeneouswind flow, the Reynolds stresses are uniquely related to the mean velocity gradientsand the two independent turbulent scaling parameters k ... It is assumed in this paper that for a high Reynolds number nearly homogeneouswind flow, the Reynolds stresses are uniquely related to the mean velocity gradientsand the two independent turbulent scaling parameters k and E. By applying dimensionalanalysis and owing to the Cayley-Hamilton theorem for tensors, a new turbulenceenclosure model so-called the axtended k-ε model has been developed. The coefficientsof the model expression were detemined by the wind tunnel experimental data ofhomogeneous shear turbulent flow. The model was compared with the standard k-εmodel in in composition and the prediction of the Reynold's normal Stresses. Using thenew model the numerical simulation of wind flow around a square cross-section tallbuilding was performed. The results show that the extended k-ε model improves theprediction of wind velocities around the building the building and wind pressures on the buildingenvelope. 展开更多
关键词 turbulence model Reynolds stress wind flow numerical simulation
下载PDF
Numerical Simulation of Countercurrent Flow in a PWR Hot Leg by Using Two-Fluid Model
17
作者 Michio Murase Yoichi Utanohara +3 位作者 Chihiro Yanagi Takashi Takata Akira Yamaguchi Akio Tomiyama 《Journal of Energy and Power Engineering》 2013年第7期1215-1222,共8页
In order to evaluate CCFL (countercurrent flow limitation) characteristics in a PWR (pressurized water reactor) hot leg under reflux condensation, numerical simulations have been conducted using a 2F (two-fluid)... In order to evaluate CCFL (countercurrent flow limitation) characteristics in a PWR (pressurized water reactor) hot leg under reflux condensation, numerical simulations have been conducted using a 2F (two-fluid) model and a VOF (volume of fluid) method implemented in the CFD (computational fluid dynamics) software, FLUENT6.3.26. The 2F model gave good agreement with CCFL data in low pressure conditions but did not give good results for high pressure steam-water conditions. In the previous study, the computational grid and schemes were improved in the VOF method to improve calculations in circular tubes, and the calculated CCFL characteristics agreed well with the UPTF (Upper Plenum Test Facility) data at 1.5 MPa. In this study, therefore, using the 2F model and the computational grid previously improved for the VOF calculations, numerical simulations were conducted for steam-water flows at 1.5 MPa under PWR full-scale conditions. In the range of medium gas volumetric fluxes, the calculated CCFL characteristics agreed well with the values calculated by the VOF method and the UPTF data at 1.5 MPa. This indicated that the reference set of the interfacial drag correlations employed in this study could be applied not only to low pressures but also to high pressures. 展开更多
关键词 Reflux condensation PWR hot leg countercurrent flow numerical simulation two-fluid model.
下载PDF
A Simulation Model for Mixing Traffic Flow at An Intersection 被引量:1
18
作者 Juan Zhicai Chen Ling & Zhang Jie(Jilin Univ. of Technology P.R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第3期63-68,共6页
This paper will develop a model simulation mixing traffic flow in the signal controlintersection. Applying the model, the schemes of traffic channeling and controlling in the typical intersection are analyzed and opti... This paper will develop a model simulation mixing traffic flow in the signal controlintersection. Applying the model, the schemes of traffic channeling and controlling in the typical intersection are analyzed and optimized and the optimal scheme make the average stop frequency be reduced by 31.8% and average stop time be reduced by 27.7%. 展开更多
关键词 Traffic flow simulation model.
下载PDF
Assessment of the Sensitivity of Streamflow Simulations to Changes in Patch Resolution Using GIS Based Hydro-Ecologic Model
19
作者 Samson G. Mengistu Melkamu A. Ali Fuad A. Yassin 《Open Journal of Modern Hydrology》 2016年第2期66-78,共13页
Eight different patch configurations were investigated to analyze the effect of patch characterization/formation in streamflow simulation, using the Regional Hydro-Ecologic Simulation Systems (RHESSys) model. It is in... Eight different patch configurations were investigated to analyze the effect of patch characterization/formation in streamflow simulation, using the Regional Hydro-Ecologic Simulation Systems (RHESSys) model. It is investigated for eight different patch configurations of a subcatchment of the Turkey Lakes Watershed, Ontario. The model’s hydrological parameters are calibrated for each of these patch configurations and the performance of the simulations is evaluated. Results indicate that both the nature of the flow simulation and the calibrated parameter values are sensitive to patch configuration. The best simulation results were obtained for the patch configuration with the highest spatial variation of climate, stream network and hillslope conditions across the subcatchment. Different patch configurations also lead to markedly different calibrations of the model’s hydrological parameters (54.26 < k < 119.13;and 1.02 < m < 2.28), which has implications for the physical interpretation and transferability of the calibrated parameter values. 展开更多
关键词 RHESSys PATCH model Calibration flow simulation
下载PDF
Hydrate agglomeration modeling and pipeline hydrate slurry flow behavior simulation 被引量:8
20
作者 Guangchun Song Yuxing Li +3 位作者 Wuchang Wang Kai Jiang Zhengzhuo Shi Shupeng Yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第1期32-43,共12页
Dynamic modeling and numerical simulation of hydrate slurry flow behavior are of great importance to offshore hydrate management.For this purpose, a dynamic model of hydrate agglomeration was proposed in this paper.Ba... Dynamic modeling and numerical simulation of hydrate slurry flow behavior are of great importance to offshore hydrate management.For this purpose, a dynamic model of hydrate agglomeration was proposed in this paper.Based on population balance equation, the frame of the dynamic model was established first, which took both hydrate agglomeration and hydrate breakage into consideration.Then, the calculating methods of four key parameters involved in the dynamic model were given according to hydrate agglomeration dynamics.The four key parameters are collision frequency, agglomeration efficiency, breakage frequency and the size distribution of sub particles resulting from particle breakage.After the whole dynamic model was built, it was combined with several traditional solid–liquid flow models and then together solved by the CFD software FLUENT 14.5.Finally, using this method, the influences of flow rate and hydrate volume fraction on hydrate particle size distribution, hydrate volume concentration distribution and pipeline pressure drop were simulated and analyzed. 展开更多
关键词 HYDRATE AGGLOMERATION flow behavior Dynamic model Numerical simulation POPULATION BALANCE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部