期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
TRANSIENT EFFECT OF A BOGER FLUID FLOWING AROUND A CONFINED CYLINDER
1
作者 Xian-feng Li Huai-tian Bu De-lu Zhao State Key Laboratory of Polymer Physics and Chemistry Center for Molecular Science,Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2001年第4期377-384,共8页
This paper is concerned with the numerical simulation of the transient effect of an inertialess Boger flow past a confined circular cylinder and the comparison of predictions with particle image velocimetry (PIV) meas... This paper is concerned with the numerical simulation of the transient effect of an inertialess Boger flow past a confined circular cylinder and the comparison of predictions with particle image velocimetry (PIV) measurements given by Shiang et al.. Dynamic simulation based on the Oldroyd-B constitutive model was carried out using a Lagrangian-Eulerian algorithm. The evolution of velocity field was obtained for the flow at two Deborah (De) numbers, i.e. De = 1.2 and 3.0. At low De, the flow reached steady state rapidly, and showed a symmetric flow regime. However, at high De, the time required to reach steady flow behind the cylinder increased significantly, and the distribution of the velocity field appears to be asymmetric with respect to the stagnation line. Fairly good agreement between the numerical results and the experimental observations is reported. It can be concluded that both the experimental measurements and the present simulations indicate that the elasticity of the polymeric flow strongly affect the flow regime of viscoelastic flow around a confined cylinder. 展开更多
关键词 transient effect flow around a cylinder Lagrangian-Eulerian algorithm Oldroyd-B model
下载PDF
Uncertainty Quantification of Numerical Simulation of Flows around a Cylinder Using Non-intrusive Polynomial Chaos 被引量:1
2
作者 王言金 张树道 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期17-21,共5页
The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic proper... The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic properties of the peak lift and drag coefficients and base pressure drop over the cylinder with the uncertainties of viscosity coefficient and inflow boundary velocity. As for the numerical results of flows around a cylinder, influence of the inflow boundary velocity uncertainty is larger than that of viscosity. The results indeed demonstrate that a five-order degree of polynomial chaos expansion is enough to represent the solution of flow in this study. 展开更多
关键词 of in on IS it Uncertainty Quantification of Numerical Simulation of flows around a cylinder Using Non-intrusive Polynomial Chaos for
下载PDF
UNSTEADY INTERACTION OF SHOCK WAVE DIFFRACTING AROUND A CIRCULAR CYLINDER IN AIR 被引量:1
3
作者 黄文生 O.Onodera K.Takayama 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1991年第4期295-299,共5页
The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically a... The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically as well as numerically.Takayama in 1987 obtained clear experimental pictures ofisopycnics in shock tube under the condi- tion that the impinging shock wave propagates as far as 3 diameters away from the cylinder.To know more complete- ly the whole unsteady process,it is desirable to get experimental results in a region which is more than 10 diameters away from the cylinder.This is what has been done in this paper by using the pulsed laser holographic interferometry for several shock Mach numbers of the impinging shock. Results for several moments are shown,giving more know- ledge about the whole unsteady flow field.This is useful for a reliable and complete understanding of the changing force acting on the cylinder,and provides interesting data to check the performance of many recently developed high resolution numerical methods for unsteady shock wave calculation. 展开更多
关键词 shock wave diffraction large flow field around a cylinder pulsed laser holographic interferometry isopycnics complex interaction of curved shocks
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部