期刊文献+
共找到1,575篇文章
< 1 2 79 >
每页显示 20 50 100
Three-Dimensional Direct Numerical Simulation of Flow past A Near-Wall Circular Cylinder:Combined Effects of Gap Ratio and Boundary Layer Thickness on Flow Profiles and Pressure Distribution
1
作者 YING Chao HUA Yang +1 位作者 WEI Yu-han JI Chun-ning 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期948-961,共14页
Three-dimensional direct numerical simulations of the wake flow downstream of a near-wall circular cylinder at different gap ratios and boundary layer thicknesses are carried out by using the iterative immersed bounda... Three-dimensional direct numerical simulations of the wake flow downstream of a near-wall circular cylinder at different gap ratios and boundary layer thicknesses are carried out by using the iterative immersed boundary method.The non-dimensional gap between the cylinder and the wall,G/D=0.2,0.6 and 1.0,the non-dimensional boundary layer thickness,δ/D=0.0,0.7 and 1.6,the Reynolds number,Re=350,and the aspect ratio of the cylinder,L/D=25are adopted.High-resolution visualizations of the complex vortex structures at differentδ/D and G/D are presented.The transition of the streamwise vortex mode,the combined effects ofδ/D and G/D on the flow statistics,the pressure and shear stress distribution and the hydrodynamic forces are analyzed.Results show that with decreasing G/D and increasingδ/D,the gap flow and its vortex-shedding are significantly weakened,together with an elongated wake and an enlarged low-velocity area near the wall,leading to the wake mode transition from the two-sided to one-sided vortex-shedding.Different relative positions of the cylinder regarding the boundary layer alter the flow features of the shear layers.With an increase inδ/D,the front stagnation point shifts to the upper surface,and the distance between the flow divergence point and the maximum pressure position increases.The mean drag coefficient and r.m.s.values of drag and lift coefficients decrease with a decrease in G/D and an increase inδ/D,while the mean lift coefficient increases with decreasing G/D but decreases with increasingδ/D. 展开更多
关键词 cylinder wake near-wall effect direct numerical simulation boundary layer thickness gap ratio
下载PDF
Coupled CFD-DEM Numerical Simulation of the Interaction of a Flow-Transported Rag with a Solid Cylinder
2
作者 Yun Ren Lianzheng Zhao +2 位作者 Xiaofan Mo Shuihua Zheng Youdong Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1593-1609,共17页
A coupled Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)approach is used to calculate the interaction of a flexible rag transported by a fluid current with a fixed solid cylinder.More specifically a hyb... A coupled Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)approach is used to calculate the interaction of a flexible rag transported by a fluid current with a fixed solid cylinder.More specifically a hybrid Eulerian-Lagrangian approach is used with the rag being modeled as a set of interconnected particles.The influence of various parameters is considered,namely the inlet velocity(1.5,2.0,and 2.5 m/s,respectively),the angle formed by the initially straight rag with the flow direction(45°,60°and 90°,respectively),and the inlet position(90,100,and 110 mm,respectively).The results show that the flow rate has a significant impact on the permeability of the rag.The higher the flow rate,the higher the permeability and the rag speed difference.The angle has a minor effect on rag permeability,with 45°being the most favorable angle for permeability.The inlet position has a small impact on rag permeability,while reducing the initial distance between the rag an the cylinder makes it easier for rags to pass through. 展开更多
关键词 RAG flow around cylinder flow characteristics numerical simulation
下载PDF
SPH Modelling of the Vortex-Induced Vibration of A Near-Wall Cylinder
3
作者 WEN Hong-jie ZHAO Yu-meng +2 位作者 ZHU Gan-cheng ZHU Liang-sheng REN Bing 《China Ocean Engineering》 SCIE EI CSCD 2023年第3期355-368,共14页
The frequency-locked phenomenon commonly occurs in the vortex-induced vibration(VIV)of bluff bodies.Numerical simulation of this lock-in behavior is challenging,especially when the structure is positioned in close pro... The frequency-locked phenomenon commonly occurs in the vortex-induced vibration(VIV)of bluff bodies.Numerical simulation of this lock-in behavior is challenging,especially when the structure is positioned in close proximity to a solid boundary.To establish a robust simulator,an enhanced smoothed particle hydrodynamic(SPH)model is developed.The SPH model incorporates a particle shifting algorithm and a pressure correction algorithm to prevent cavity formation in the structure's wake area.A damping zone is also established near the outlet boundary to dissipate the vortices that shed from the structure.Additionally,GPU parallel technology is implemented to enhance the SPH model's computational efficiency.To validate the mo del,the predicted results are compared with the available refere nce data for flow past both stationary and oscillating cylinders.The verified SPH model is then employed to comparatively investigate the motion re sponse,lift characteristic,and vortex shedding mode of cylinders with and without accounting for the effect of boundary layers.Numerical analyses demonstrate that the developed SPH model is a proficient tool for efficiently simulating the vibration of near-wall bluff bodies at low Reynolds number. 展开更多
关键词 SPH model VIV near-wall cylinder Reynolds number GPU
下载PDF
Effects of Crosswise Appendage Plate Flexibility on the Drag Reduction Characteristics of Cylinder
4
作者 Jiyao Yang Xiaomei Ye +1 位作者 Guoyi He Feng Yu 《Journal of Applied Mathematics and Physics》 2024年第6期2032-2040,共9页
In engineering applications (Like an ocean riser), fluid flow around bluff bodies generates substantial resistance, which can jeopardize structural integrity, lifespan, and escalate resource consumption. Therefore, em... In engineering applications (Like an ocean riser), fluid flow around bluff bodies generates substantial resistance, which can jeopardize structural integrity, lifespan, and escalate resource consumption. Therefore, employing drag reduction measures becomes particularly crucial. This paper employs the immersed boundary method to investigate the impact of transversely oriented appendage plate flexibility on the drag of cylinders under different Reynolds numbers and distances. The results indicate that flexible appendage plate exerts drag reduction effects on the downstream cylinder, with this effect gradually diminishing as Reynolds numbers increase. At identical Reynolds numbers, the drag reduction effect initially increases and then decreases with distance, with the optimal drag reduction distance observed at D = 2.5. Compared to cylinders without appendage plate, the maximum drag reduction achieved is 30.551%. Addressing the drag reduction issue in cylinders holds significant importance for ensuring engineering structural integrity, enhancing engineering efficiency, and developing novel underwater towing systems. 展开更多
关键词 Appendage Plate FLEXIBILITY cylinder flow Drag Reduction
下载PDF
Application of Optical Visualization Method in Observing Flow Field Around a Cylinder
5
作者 Hongbo Wang Chaohe Chen 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第2期12-24,共13页
In this paper, a free-surface synthetic schlieren(FS-SS) method was performed to detect the free surface disturbances. It is a purely optical method that uses refraction of light to reconstruct the height changes of w... In this paper, a free-surface synthetic schlieren(FS-SS) method was performed to detect the free surface disturbances. It is a purely optical method that uses refraction of light to reconstruct the height changes of water surface. The theory was developed based on Moisy's research, but has mainly been used in small-scale applications like painting and coating industry. Based on the methods and theories of the literature review, an in-depth investigation was conducted to optimize the FS-SS method and verify its feasibility on a relatively large-scale(e.g., wake region of shallow flow). The experimental setup was simplified which is approachable in most laboratories. Through proper experimental setting and an optimized post-processing routine, the quality of image was highly improved and ensured the accuracy of results. A drop test was performed proving the continuity of FS-SS method in the time domain. Also, a comparison test with flow around a cylinder at two speeds showed the ability of FS-SS method to reconstruct the irregular water surface in relative large-scale flow structures. 展开更多
关键词 FS-SS flow around cylinder water height detection
下载PDF
Flow Dynamics around Two Side by Side Circular Cylinders with Alternating Movements
6
作者 Alice Rosa da Silva 《World Journal of Mechanics》 2023年第1期1-19,共19页
The flow dynamics is analyzed through two-dimensional numerical simulations around two circular cylinders arranged side by side, with 4 combinations of alternating motions. All simulations are performed for Re = 1000,... The flow dynamics is analyzed through two-dimensional numerical simulations around two circular cylinders arranged side by side, with 4 combinations of alternating motions. All simulations are performed for Re = 1000, amplitude of oscillation (A) equal to 3, frequency ratio (f<sub>r</sub>) of 0.5, specific rotation (α) equal to 0.5 and different values of spacing ratio (L/D). It is verified that the combination of the type of movement, together with the position of one cylinder in relation to the other, exerts significant influence on the flow dynamics, as well as on the pressure distribution around the cylinder surface and on the average values of the fluid dynamics coefficients. The smallest value of the average pressure coefficient (C<sub>p</sub> = -3.3), is obtained for the oscillating cylinder when placed side by side with the clockwise rotation cylinder, case 3 and L/D = 1.5. On the other hand, the lowest mean drag coefficient (C<sub>d</sub> = 1.0788), is obtained for the cylinder with counterclockwise rotation, located in the lower position in relation to oscillating cylinder in the upper position, with spacing between them of 1.5. Furthermore, it is observed that the rotation movement is more effective in reducing drag than the rotation-oscillation movement, for the studied frequency ratio. 展开更多
关键词 ROTATION Rotation-Oscillation flow Dynamic Circular cylinder
下载PDF
Three-dimensional numerical simulation of the flow past a circular cylinder based on LES method 被引量:1
7
作者 陈海龙 戴绍士 +1 位作者 李佳 姚熊亮 《Journal of Marine Science and Application》 2009年第2期110-116,共7页
The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three ... The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three dimensional N-S equations were obtained by the finite volume method. The focus of this numerical simulation was to research the characteristics of pressure distribution (drag and litt forces) and vortex tubes at high Reynolds numbers. The results of the calculations showed that the forces at every section in the spanwise direction of the cylinder were symmetrical about the middle section and smaller than the forces calculated in two dimensional cases. Moreover, the flow around the cylinder obviously presents three dimensional characteristics. 展开更多
关键词 LES method three-dimensional flow past circular cylinder hydrodynamic characteristics
下载PDF
Numerical Simulation of Viscous Flow Around a Rolling Cylinder with Ship-Like Section 被引量:9
8
《China Ocean Engineering》 SCIE EI 1995年第1期9-18,共10页
Two-dimensional unsteady incompressible viscous flow around a rolling cylinder with ship-like section is numerically simulated by employing the computational scheme previously developed by the authors, in which the co... Two-dimensional unsteady incompressible viscous flow around a rolling cylinder with ship-like section is numerically simulated by employing the computational scheme previously developed by the authors, in which the continuity and momentum equations are satisfied simultaneously at each time step for oscillating flow. The numerical results show that the motion of vortices around a rolling ship hull is cyclical. It is found that the location of the vortices is very similar to the existing experimental result. Using these simulation results, we can calculate the roll damping of ships including viscous effects. 展开更多
关键词 viscous flow numerical simulation two-dimensional cylinder rolling motion
下载PDF
Viscous-Flow-Based Analysis of Wave Near-Trapped in a Four-Cylinder Structure 被引量:5
9
作者 Zhengke Wang Guanghua He +1 位作者 Zhigang Zhang Yanghan Meng 《Journal of Marine Science and Application》 CSCD 2018年第3期371-379,共9页
The hydrodynamic analysis of multi-floating bodies is important and widely used in marine engineering. In this study, we systematically simulated the wave diffraction problem of a fixed vertical four-cylinder structur... The hydrodynamic analysis of multi-floating bodies is important and widely used in marine engineering. In this study, we systematically simulated the wave diffraction problem of a fixed vertical four-cylinder structure in regular waves in the time domain in a viscous numerical wave tank. The hydrodynamic interaction of waves with a bottom-mounted structure consisting of four vertical cylinders arranged at the corners of a square shows a complicated interference phenomenon. In this paper, we illustrate and analyze the run-up around the structure and the corresponding wave forces. To investigate the viscous effect on the near-trapping phenomenon, we pay particular attention to investigating the waves near-trapped inside the four-cylinder structure,and make a comparative study of the viscous-and inviscid-flow solutions with the experimental measurements. The results show that the maximum wave elevation occurs on the inner side of the leeside cylinder, and that the wave elevations on the outer side of the cylinders are lower than those on the inner side. We can conclude that viscosity has an obvious damping effect on wave elevations inside the structure. The cylinders show a tendency to drift apart from each other when the near-trapping phenomenon occurs. 展开更多
关键词 cylinder Near-trapping VISCOUS flow Wave elevations Regular waves
下载PDF
Vortex-Induced Vibrations of A Long Flexible Cylinder in Linear and Exponential Shear Flows 被引量:4
10
作者 GAO Yun YANG Bin +2 位作者 ZOU Li ZONG Zhi ZHANG Zhuang-zhuang 《China Ocean Engineering》 SCIE EI CSCD 2019年第1期44-56,共13页
A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to l... A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to linear and exponential shear flows. The coupling equations of a structural vibration model and wake oscillator model were solved using a standard central finite difference method of the second order. The VIV response characteristics including the structural displacement, structural frequency, structural wavenumber, standing wave behavior,travelling wave behavior, structural velocity, lift force coefficient and transferred energy from the fluid to the structure with different flow profiles were compared. The numerical results show that the VIV displacement is a combination of standing waves and travelling waves. For linear shear flow, standing waves and travelling waves dominate the VIV response within the low-velocity and high-velocity zones, respectively. The negative values of the transferred energy only occur within the low-velocity zone. However, for exponential shear flow, travelling waves dominate the VIV response and the negative energy occurs along the entire length of the cylinder. 展开更多
关键词 vortex-induced vibration LONG FLEXIBLE cylinder WAKE oscillator model EXPONENTIAL shear flow TRANSFERRED energy
下载PDF
Experimental study of vortex-induced vibrations of a cylinder near a rigid plane boundary in steady flow 被引量:5
11
作者 Bing Yang Fuping Gao +1 位作者 Dong-Sheng Jeng Yingxiang Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第1期51-63,共13页
In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boun... In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carded out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-criti- cal flow regime; (2) with increasing gap-to-diameter ratio (eo/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/fn) has a slight variation for the case of larger values of eo/D(eo/D 〉 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylin- derbetween the larger gap-to-diameter ratios (e0/D 〉 0.66) and the smaller ones (e0/D 〈 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of Vr number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of Vr and the frequency ratio (f/fn) become larger. 展开更多
关键词 Vortex-induced vibration cylinder near a plane boundary Steady flow Vortex shedding
下载PDF
Shear flow induced vibrations of long slender cylinders with a wake oscillator model 被引量:4
12
作者 Fei Ge Wei Lu Lei Wang You-Shi Hong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第3期330-338,共9页
A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They a... A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations(VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions. The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fiuid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model,such as the spanwise average displacement,vibration frequency,dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior. 展开更多
关键词 Vortex-induced vibration Vortex-induced wave Shear flow Wake oscillator Long slender cylinder
下载PDF
Size effects on flow stress of C3602 in cylinder compression with different lubricants 被引量:3
13
作者 GONG Feng GUO Bin ZHOU Jian SHAN Debin 《Rare Metals》 SCIE EI CAS CSCD 2009年第5期528-532,共5页
Micro parts are more difficult to be formed than macro parts because of size effects. The size effects on the flow stress of copper alloy C3602 with different lubricants were studied. Specimens were heat treated at 35... Micro parts are more difficult to be formed than macro parts because of size effects. The size effects on the flow stress of copper alloy C3602 with different lubricants were studied. Specimens were heat treated at 350℃ for 1 h and 700℃ for 3 h in nitrogen atmosphere, respectively. The initial diameters of the specimens were varied from 5 to 1 mm with a height-to-diameter ratio h0/D0 = 1.5. Cylinder compression was carried out in the lubrication condition with talc powder, without lubricant, with petroleum jelly, and with vegetable oil. The experiment was carried out at room temperature on a universal testing machine INSTRON 5569 with a strain rate of ε = 0.0025 A. The results show that with the same lubricant, the yield strength decreases with a decrease in specimen size for the specimens annealed at 350℃ for 1 b; however, it increases with a decrease in specimen size for the specimens annealed at 700℃ for 3 h. The yield strength decreases with an increase in grain size. The influences of lubricants on yield strength become larger with miniaturization of the specimens. 展开更多
关键词 MICROFORMING size effects cylinder compression flow stress LUBRICANT
下载PDF
Large-eddy simulation of circular cylinder flow at subcritical Reynolds number:Turbulent wake and sound radiation 被引量:3
14
作者 Li Guo Xing Zhang Guowei He 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第1期1-11,共11页
The flows past a number 3900 are simulated circular cylinder at Reynolds using large-eddy simulation (LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volum... The flows past a number 3900 are simulated circular cylinder at Reynolds using large-eddy simulation (LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volume scheme is used to discretize the incompressible Navier- Stokes equations. The dynamic global coefficient version of the Vreman's subgrid scale (SGS) model is used to com- pute the sub-grid stresses. Curie's integral of Lighthill's acoustic analogy is used to extract the sound radiated from the cylinder. The profiles of mean velocity and turbulent fluctua- tions obtained are consistent with the previous experimental and computational results. The sound radiation at far field exhibits the characteristic of a dipole and directivity. The sound spectra display the -5/3 power law. It is shown that Vreman's SGS model in company with dynamic procedure is suitable for LES of turbulence generated noise. 展开更多
关键词 flows past circular cylinder Aerodynamicnoise Large-eddy simulation Unstructured grid Acousticanalogy
下载PDF
Numerical investigation of laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders 被引量:8
15
作者 Mehdi MIRZAEYAN Davood TOGHRAIE 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1976-1999,共24页
In this study, the laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders was investigated. The problem is investigated in two different geometries and the Re=10, 25, 50, 75, 100 a... In this study, the laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders was investigated. The problem is investigated in two different geometries and the Re=10, 25, 50, 75, 100 and volume fraction 0, 0.2%, 0.5%, 2% and 5% that related to copper nanoparticles, and porous medium porosity of 0.5 and 0.9. Compared to the first geometry, the convective coefficient in the second geometry increases by 8.3%, 7% and 5.5% at Reynolds numbers of 100, 75 and 50, respectively. Comparison of the outlet temperatures for two heat fluxes of 300 and 1200 W/m^2 indicates a 2.5% temperature growth by a fourfold increase in the heat fluxes. Also, the higher Nusselt number is associated with the second geometry occurring at porosities of 0.9 and 0.5, respectively. In both geometries, the Nusselt number values at the porosity of 0.9 are higher, which is due to the increased nanofluid convection at higher porosities. The velocity of the nanofluid experiences a two-fold increase at the outlet compared to its inlet velocity in the first geometry and for both porosities. Similarly, a three-fold increase was achieved in the second geometry and for both porosities. 展开更多
关键词 porous horizontal concentric cylinders nanofluid flow PERMEABILITY heat transfer
下载PDF
Numerical Simulation on Flow Past Two Side-by-Side Inclined Circular Cylinders at Low Reynolds Number 被引量:2
16
作者 LIU Cai GAO Yang-yang +2 位作者 QU Xin-chen WANG Bin ZHANG Bao-feng 《China Ocean Engineering》 SCIE EI CSCD 2019年第3期344-355,共12页
A series of three-dimensional numerical simulations is carried out to investigate the effect of inclined angle on flow behavior behind two side-by-side inclined cylinders at low Reynolds number Re=100 and small spacin... A series of three-dimensional numerical simulations is carried out to investigate the effect of inclined angle on flow behavior behind two side-by-side inclined cylinders at low Reynolds number Re=100 and small spacing ratio T/D=1.5 (T is the center-to-center distance between two side-by-side cylinders, D is the diameter of cylinder). The instantaneous and time-averaged flow fields, force coefficients and Strouhal numbers are analyzed. Special attention is focused on the axial flow characteristics with variation of the inclined angle. The results show that the inclined angle has a significant effect on the gap flow behaviors behind two inclined cylinders. The vortex shedding behind two cylinders is suppressed with the increase of the inclined angle as well as the flip-flop gap flow. Moreover, the mean drag coefficient, root-mean-square lift coefficient and Strouhal numbers decrease monotonously with the increase of the inclined angle, which follows the independent principle at small inclined angles. 展开更多
关键词 TWO side-by-side inclined cylinders inclined angle WAKE flow pattern low REYNOLDS number AXIAL flow
下载PDF
Investigation of scale efect for the computation of turbulent flow around a circular cylinder 被引量:2
17
作者 Lin Lin Yan-Ying Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第5期641-648,共8页
In order to investigate the scale effect of turbulent flow around a circular cylinder, two similarity numbers (criteria) based on turbulent kinetic and dissipation rates associ- ated with the fluctuation characteris... In order to investigate the scale effect of turbulent flow around a circular cylinder, two similarity numbers (criteria) based on turbulent kinetic and dissipation rates associ- ated with the fluctuation characteristics of turbulence wake are deduced by analyzing the Reynolds averaged NavierStokes equations (RANS). The RNG k-s models and finite volume method are used to solve the governing equations and the second-order implicit time and upwind space discretization algorithms are used to discrete the governing equations. A numerical computation of flow parameters around a two-dimensional circular cylinder with Reynolds numbers ranging from 102 to l07 is accomplished and the result indicates that the fluctuation of turbulence flow along the center line in the wake of circular cylinder can never be changed with increasing Reynolds numbers when Re ≥ 3 × 10^6. This conclusion is useful for controlling the scale of numerical calculations and for applying model test data to engineering practice. 展开更多
关键词 Turbulent flow flow around circular cylinder Scale effect Dynamic similarity
下载PDF
Experimental Study on the Flow Around Two Tandem Cylinders with Unequal Diameters 被引量:4
18
作者 GAO Yangyang ETIENNE Stephane +1 位作者 WANG Xikun TAN Soon Keat 《Journal of Ocean University of China》 SCIE CAS 2014年第5期761-770,共10页
In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique(PIV) in a water channel. The upstream to downstream d... In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique(PIV) in a water channel. The upstream to downstream diameter ratio was kept constant at d/D = 2/3, the centre-to-centre distance was varied from 1.2D to 5D and the Reynolds number was varied from 1200 to 4800. The flow characteristics were analyzed through ensemble-averaged patterns of velocity, vorticity, normalized Reynolds stress contours and streamlines. Based on ensemble-averaged and instantaneous flow fields, different flow patterns, including single-wakeshedding at small spacing ratio, bi-stable flow behavior(alternating behavior of reattachment and vortex shedding) at intermediate spacing ratio and co-shedding pattern at large spacing ratio were observed. The effects of Reynolds number and the centre-to-centre spacing ratio on flow patterns and turbulent characteristics were also investigated. It was found that the diameter ratio appears to have a certain effect on the flow patterns at intermediate spacing ratios, where the reattachment of shear layer depends on the lateral width of the wake flow in the lee of the upstream cylinder. Extensive discussion on the distributions of Reynolds stress and turbulent kinetic energy was presented. 展开更多
关键词 tandem cylinders with unequal diameters PIV flow patterns Reynolds stress distribution
下载PDF
Near Wake of a Horizontal Circular Cylinder in Stably Stratified Flows 被引量:3
19
作者 Yuji Ohya Takanori Uchida Tomoyuki Nagai 《Open Journal of Fluid Dynamics》 2013年第4期311-320,共10页
The near wake of a circular cylinder in linearly stratified flows of finite depth was experimentally investigated by means of flow visualization and measurements of vortex shedding frequencies, at Reynolds numbers 3.5... The near wake of a circular cylinder in linearly stratified flows of finite depth was experimentally investigated by means of flow visualization and measurements of vortex shedding frequencies, at Reynolds numbers 3.5 × 103-1.2 × 104 and stratification parameters kd 0-2.0. The non-dimensional parameter kd is defined as kd = Nd/U, where N is the Brunt-Vaisala frequency, d, the diameter of the cylinder, and U, the approaching flow velocity. The study demonstrates that as kd increases from zero, the vortex shedding from a circular cylinder progressively strengthens, while the Strouhal number gradually becomes lower than that for homogeneous flow. This phenomenon can be explained by the effect of the increasingly stable stratification which enhances the two-dimensionality of the near-wake flow of the circular cylinder;the enhanced two-dimensionality of the flow strengthens the roll-up of the separated shear layer. Above a certain value of kd, however, vortex formation and shedding are strongly suppressed and the Strouhal number rises sharply. This observation is attributable to the development of stationary lee waves downstream of the circular cylinder because the lee waves strongly suppress vertical fluid motions. 展开更多
关键词 STRATIFIED flow Circular cylinder WAKE Pattern VORTEX SHEDDING LEE Wave
下载PDF
Stress boundary layers in the viscoelastic flow past a cylinder in a channel:limiting solutions 被引量:1
20
作者 Yurun Fan Huayong Yang Roger I. Tanner 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第4期311-321,共11页
The flow past a cylinder in a channel with the aspect ratio of 2 : 1 for the upper convected Maxwell (UCM) fluid and the Oldroyd-B fluid with the viscosity ratio of 0.59 is studied by using the Galerkin/Least-squar... The flow past a cylinder in a channel with the aspect ratio of 2 : 1 for the upper convected Maxwell (UCM) fluid and the Oldroyd-B fluid with the viscosity ratio of 0.59 is studied by using the Galerkin/Least-square finite element method and a p-adaptive refinement algorithm. A posteriori error estimation indicates that the stress-gradient error dominates the total error. As the Deborah number, De, approaches 0.8 for the UCM fluid and 0.9 for the Oldroyd-B fluid, strong stress boundary layers near the rear stagnation point are forming, which are characterized by jumps of the stress-profiles on the cylinder wall and plane of symmetry, huge stress gradients and rapid decay of the gradients across narrow thicknesses. The origin of the huge stress-gradients can be traced to the purely elongational flow behind the rear stagnation point, where the position at which the elongation rate is of 1/2De approaches the rear stagnation point as the Deborah number approaches the critical values. These observations imply that the cylinder problem for the UCM and Oldroyd-B fluids may have physical limiting Deborah numbers of 0.8 and 0.9, respectively. 展开更多
关键词 Viscoelastic flow Stress boundary layer flow around cylinder Adaptive finite element
下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部