Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical exa...Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical example was used to testify the validity of the quenching tank model. In order to take tank parameters (agitation speed, position of directional flow baffle and coordinate position in quench zone) into account, an approach that combines the artificial neural network (ANN) with CFD method was developed to study the flow distribution in the quenching tank. The flow rate of the quenching medium shows a very good agreement between the ANN predicted results and the Fluent simulated data. Methods for the optimal design of the quenching tank can be used as technical support for industrial production.展开更多
The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow f...The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow field in two types of quench tanks(with or without agitation system) were calculated.The results show that the flow field in the quench tank without agitation system has not evident regularity.While as for the quench tank with agitation system,the flow fields in different parameters have certain regularity.The agitation tanks have a distinct advantage over the system without agitation.Proper process parameters were also obtained.Finally,the tank model established in this work was testified by an example from publication.This model with high accuracy is able to optimize the tank structures and can be helpful for industrial production and theoretical investigation in the fields of heat treatment of large complicated components.展开更多
The flow maldistribution and the effect of different inlet configuration on the flow distribution in platefin heat exchangers were studied experimentally. It is found that the flow maldistribution is serious because o...The flow maldistribution and the effect of different inlet configuration on the flow distribution in platefin heat exchangers were studied experimentally. It is found that the flow maldistribution is serious because of the defects of inlet configurations, while the inlet configuration and Reynolds number are the main factors affecting the flow distribution. The improved inlet configurations, which are the header with a two-stage distributing configuration and the guide vane with a fluid complementary cavity were proposed and tested in this paper. The experimental results show that the improved inlet configurations can effectively improve the performance of flow distribution in heat exchangers.展开更多
The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measure...The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measured experimentally by the use of particle image velocimetry (PIV). The influences of gas flowrate, solution mass concentration, orifice interval and the angle between two bubble centers line and vertical direction on the flow field surrounding bubbles were discussed respectively by analyzing the velocity vector, velocity contours as well as individual velocity components. The results show that the liquid velocity both in front of two bubbles and behind increases with gas flowrate duo to shear-thinning effect of previous bubbles, whereas decreases with the increase of CMC concentration due to the increase of drag force acting on bubbles. The effect of the orifice interval on the flow field around two moving bubbles becomes gradually obvious as the interval becomes closer. Moreover, two adjacent side-by-side bubbles repulse each other during rising, leading to the practical interval between them increased somewhat above the orifice interval. When the distance between bubbles is less than the orifice interval 10 mm, the interaction between two neighboring bubbles changed from mutual repellence to attraction with the decrease of the angle of the line of linking two bubble centers to the vertical direction.展开更多
A novel hood structure has been designed for the dust control system in the foundry in order to improve the working environment. A composite strategy has been applied for comparative analysis of the optimal venting vo...A novel hood structure has been designed for the dust control system in the foundry in order to improve the working environment. A composite strategy has been applied for comparative analysis of the optimal venting volume and the airflow distribution between the conventional hood and the novel one in this study. A Computational Fluid Dynamic (CFD) method is used to simulate the airflow fields and dust-polluted air moving paths. The CFD results show that a two-outlet hood, with one outlet located on the left of the hood, is better for improving dust-polluted air than the hood with one outlet only. It can be concluded that the number of the outlets as well as their location on the hood has a significant influence on the air flow pattern in the hood. The optimal venting volume is also a major consideration that is discussed in the study. The venting volume should be designed by considering both the effective level of air flow velocity around the dust source and the energy saving. The optimal airflow distribution may reduce the turbulence in the hood system.展开更多
Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall info...Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall information only. However, detailed analysis is required to find effects of design parameters on the flow distribution. For this aspect, three-dimensional turbulent flow analysis was performed to assess turbulence model performance and effects of upstream pressure and branch pipe geometry. Three different turbulence models of standard k-e model, realizable k-e model and standard k-co yield similar results, indicating small effects of turbulence models on flow characteristics analysis. Geometric variations include area ratio of main and branch pipes, branch pipe diameter, and connection shape of main and branch pipes. Among these parameters, area ratio and branch diameter and shape show strong effect on flow distribution due to high friction and minor loss. Uniform flow distribution is one of common requirements in the branch piping system and this can be achieved with rather high total loss design.展开更多
An improved CFD model of gas flow and particle interception in a fiber material which fiber size is Y-shape was developed in this work. The porous medium model was used to build the model of the whole size of fiber fi...An improved CFD model of gas flow and particle interception in a fiber material which fiber size is Y-shape was developed in this work. The porous medium model was used to build the model of the whole size of fiber filter medium. Mixture model was adopted. The algorithm of particle interception in the whole size of fiber filter medium was derived and UDF(User Defined Function) that described kinds of particle filtering mechanisms in filter fibrous media was added to the Fluent default conservation equation as source term for simulation. The inertial resistance of the filter was taken into consideration, which provided a more precise measurement of the smoke flow and the particle interception in the filter under higher smoke speed conditions. The commercial software, Fluent 6.3, was used to simulate the smoke flow and particle interception in the filter in a single suction. The velocity and pressure profiles of smoke or nicotine particle in the filter, as well as nicotine particle volume fraction profile were well simulated. Finally, the comparisons of nicotine particle filtration efficiency between Fluent simulation results in this work and experimental results, as well as the model prediction in the literature were made to validate the simulation model. The comparisons showed that the particle entrapment model from simulation results was in good agreement with that from the experimental results. In addition, the Fluent simulation results are closer to reality both at the beginning and the end of the smoke process comparing with the model predicted results in the literature.展开更多
Accurate electric energy(EE)measurements and billing estimations in a power system necessitate the development of an energy flow distribution model.This paper summarizes the results of investigations on a new problem ...Accurate electric energy(EE)measurements and billing estimations in a power system necessitate the development of an energy flow distribution model.This paper summarizes the results of investigations on a new problem related to the determination of EE flow in a power system over time intervals ranging from minutes to years.The problem is referred to as the energy flow problem(EFP).Generally,the grid state and topology may fluctuate over time.An attempt to use instantaneous(not integral)power values obtained from telemetry to solve classical electrical engineering equations leads to significant modeling errors,particularly with topology changes.A promoted EFP model may be suitable in the presence of such topological and state changes.Herein,EE flows are determined using state estimation approaches based on direct EE measurement data in Watt-hours(Volt-ampere reactive-hours)provided by electricity meters.The EFP solution is essential for a broad set of applications,including meter data validation,zero unbalance EE billing,and nontechnical EE loss check.展开更多
Due to the increasing global demand for industrial gas, the development of large-scale cryogenic air separation systems has attracted considerable attention in recent years. Increasing the height of the adsorption bed...Due to the increasing global demand for industrial gas, the development of large-scale cryogenic air separation systems has attracted considerable attention in recent years. Increasing the height of the adsorption bed in a vertical radial flow adsorber used in cryogenic air separation systems may efficiently increase the treatment capacity of the air in the adsorber. However, uniformity of the flow distribution of the air inside the adsorber would be deteriorated using the height-increasing method. In order to reduce the non-uniformity of the flow distribution caused by the excessive height of adsorption bed in a vertical radial flow adsorber, a novel parallel connection method is proposed in the present work. The experimental apparatus is designed and constructed; the Computational Fluid Dynamics(CFD) technique is used to develop a CFD-based model, which is used to analyze the flow distribution, the static pressure drop and the radial velocity in the newly designed adsorber. In addition, the geometric parameters of annular flow channels and the adsorption bed thickness of the upper unit in the parallelconnected vertical radial flow adsorber are optimized, so that the upper and lower adsorption units could be penetrated by air simultaneously. Comparisons are made between the height-increasing method and the parallel connection method with the same adsorber height. It is shown that using the parallel connection method could reduce the difference between the maximum and minimum radial static pressure drop by 86.2% and improve the uniformity by 80% compared with those of using the height-increasing method. The optimal thickness ratio of the upper and lower adsorption units is obtained as 0.966, in which case the upper and lower adsorption units could be penetrated by air simultaneously, so that the adsorbents in adsorption space could be used more efficiently.展开更多
AIM To study the effect of leukocyteendothelium interaction (LEI) on the flow anddistribution of leukocytes in microcirculationunder physiological condition.METHODS A microcirculation image multipleparameter computer ...AIM To study the effect of leukocyteendothelium interaction (LEI) on the flow anddistribution of leukocytes in microcirculationunder physiological condition.METHODS A microcirculation image multipleparameter computer analysis system (MIMPCAS)was used to study the flow and distribution ofleukocytes in mesentery microcirculation of ratsIn vivo.RESULTS The difference of visible leukocyteflux (VLF) was as high as 131 times in thearterioles and venules with similar diameter andblood velocity. The visible leukocytes rolledalong the blood vessel wall as a" jerky"movement. The frequency distribution of thevisible leukocyte velocity (VLV) showed a "twopeak" Curve. The low peak value was at 10 pm/ s-- 15 pm/ s while the high peak fell between25 pm/ s-- 30 pm/ s. With the increase of diameterof venules, VLF increased while the VLVremained at the same level. With the increase ofRBC velocity, VLV trends to elevate and VLF tofal I down.CONCLUSION The results herein might providea basic theory for the study on the mechanism ofLEI under physiological condition and novelmethods for the prevention and treatment of highLEI in many pathological展开更多
This paper uses the Oseen transformation to solve the differential equations governing motion of the vertical linear gradient flow distribution close to a wall surface. The Navier-Stokes equations are used to consider...This paper uses the Oseen transformation to solve the differential equations governing motion of the vertical linear gradient flow distribution close to a wall surface. The Navier-Stokes equations are used to consider the inertia term along the flow direction. A novel contour integral method is used to solve the complex Airy function. The boundary conditions of linear gradient flow distribution for finite problems are determined. The vorticity function, the pressure function, and the turbulent velocity profiles are provided, and the stability of particle trajectories is studied. An Lx-function form of the third derivative circulation is used to to simplify the solution. Theoretical results are compared with the experimental measurements with satisfactory agreement.展开更多
The flow of pseudoplastic power-law fluids with different flow indexes at a microchannel plate was studied using computational fluid dynamic simulation.The velocity distribution along the microchannel plate and especi...The flow of pseudoplastic power-law fluids with different flow indexes at a microchannel plate was studied using computational fluid dynamic simulation.The velocity distribution along the microchannel plate and especially in the microchannel slits,flow pattern along the outlet arc and the pressure drop through the whole of microchannel plate were investigated at different power-law flow indexes.The results showed that the velocity profile in the microchannel slits for low flow index fluids was similar to the plug flow and had uniform pattern.Also the power-law fluids with lower flow indexes had lower stagnation zones near the outlet of the microchannel plate.The pressure drop through the microchannel plate showed huge differences between the fluids.The most interesting result was that the pressure drops for power-law fluids were very smaller than that of Newtonian fluids.In addition,the heat transfer of the fluids through the microchannel with different channel numbers in a wide range of Reynolds number was investigated.For power-law fluid with flow index(n=0.4),the Nusselt number increases continuously as the number of channels increases.The results highlight the potential use of using pseudoplastic fluids in the microheat exchangers which can lower the pressure drop and increase the heat transfer efficiency.展开更多
Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in bo...Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in both cross section and longitudinal section within cyclonic zone was studied for different circulating volumes. The cross sectional vortex was also analyzed. The results show that in cross section as the circulating volume increases from 0.187 to 0.350 m 3 /h, the flow velocity ranges from 0 to 0.68 m/s. The flow field is mainly a non-vortex potential flow that forms a free vortex without outside energy input. In the cyclonic region the vortex deviates from the center of the flotation column because a single tangential opening introduces circulating fluid into the column. The tangential component of the velocity plays a defining role in the cross section. In the longitudinal section the velocity ranges from 0 to 0.08 m/s. The flow velocity increases as does the circulating volume. Advantageous mineral separation conditions arise from the combined effects of cyclonic flow in cross and longitudinal section.展开更多
Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction a...Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.展开更多
In the upper reaches of Yangtze River and other rivers of southwestern China, the debris flows develop and lead to most serious disasters because of the various landforms, complex geological structures and abundant ra...In the upper reaches of Yangtze River and other rivers of southwestern China, the debris flows develop and lead to most serious disasters because of the various landforms, complex geological structures and abundant rainfall. The distribution of debris flows has regularity in the regions with different landform, geological structure, and precipitation. The regularities of distribution of debris flows are as following: (1) distributed in transition belts of different morphologic regions; (2) distributed in the area with strong stream trenching; (3) distributed along fracture zones and seismic belts: (4) distributed in the area with abundant precipitation; (5) distribution of debris flow is azonal. The activity of abundant debris flows not only brings harm to Towns, Villages and Farmlands, Main Lines of Communication, Water-Power Engineering, Stream Channels etc., but also induces strong water and soil loss. According to the present status of debris flow prevention, the problems in disasters mitigation and soil conservancy are found out, and the key works are brought up for the future disasters prevention and soil conservancy.展开更多
The local gas-flow behavior is almost unknown for low pressure plasma systems, except parallel plate reactors for semiconductor purposes. To overcome this lack of knowledge, this study starts with the influence invest...The local gas-flow behavior is almost unknown for low pressure plasma systems, except parallel plate reactors for semiconductor purposes. To overcome this lack of knowledge, this study starts with the influence investigation of the gas feed-in systems technical layout on the homogeneity of the gas supply for large volume plasma enhanced chemical vapor deposition (PECVD) chambers. Computational fluid dynamics (CFD) simulations are used as a tool to determine velocity and pressure distribution inside the gas feed-in pipe as well as in the PECVD-chamber itself. The parameters varied were: flow rate, pipe length, number of holes, hole diameter and aspect ratio of the pipe section. The calculated pressure values are compared with the experimentally measured ones to validate the simulation results. An excellent conformity of the calculated and measured pressures is observed. With the aim to evaluate the homogeneity of gas distribution through the pipe holes the nonuniformity coefficient (Φ) was created. The results show the influence of each layout parameter in the homogeneity of the gas distribution. Hence in future correct technical layouts of gas feed-in systems can easily be applied. With these results construction guidelines has been formulated.展开更多
For the first time, an important ingested flow phenomenon was discovered inexperiments at the film cooling hole exit. The trends of 3-D flow fie1ds and the fullnessfactor, Ci, were discussed in detail over a wide rang...For the first time, an important ingested flow phenomenon was discovered inexperiments at the film cooling hole exit. The trends of 3-D flow fie1ds and the fullnessfactor, Ci, were discussed in detail over a wide range of now parameters and the geometryof fan-shaped holes at this exit plane. It has been confirmed that the main reason of creat-ing longitudinal bound vortices is not the flow iri the hole but the mixing of mainstreamand jet at its exit.展开更多
Objective To investigate the flow distribution in plate fin heat exchangers and optimize the design of header configuration for plate fin heat exchangers. Methods A mathematical model of header was proposed. The e...Objective To investigate the flow distribution in plate fin heat exchangers and optimize the design of header configuration for plate fin heat exchangers. Methods A mathematical model of header was proposed. The effects of the header configuration on the flow distribution in plate fin heat exchangers were investigated by CFD. The second header configuration with a two stage distributing structure was brought forward to improve the performance of flow distribution. Results It is found that the flow maldistribution is very serious in the direction of header length for the conventional header used in industry. The numerical predictions indicate that the improved header configurations can effectively improve the performance of flow distribution in plate fin heat exchangers. Conclusion The numerical simulation confirms that CFD should be a suitable tool for predicting the flow distribution. The method has a wide variety of applications in the design of plate fin heat exchangers.展开更多
The bending moment acting on the overhung shaft of a gas-sparged vessel stirred by a Rushton turbine,as one of the results of fluid and structure interactions in stirred vessels,was measured using a moment sensor equi...The bending moment acting on the overhung shaft of a gas-sparged vessel stirred by a Rushton turbine,as one of the results of fluid and structure interactions in stirred vessels,was measured using a moment sensor equipped with digital telemetry.An analysis of the shaft bending moment amplitude shows that the amplitude distribution of the bending moment,which indicates the elasticity nature of shaft material against bending deformation,follows the Weibull distribution.The trends of amplitude mean,standard deviation and peak deviation characteristics manifest an "S" shape versus gas flow.The "S" trend of the relative mean bending moment over gas flow rate,depending on the flow regime in gas-liquid stirred vessels,resulted from the competition among the nonuniformity of bubbly flow around the impeller,the formation of gas cavities behind the blades,and the gas direct impact on the impeller when gas is introduced.A further analysis of the bending moment power spectral density shows that the rather low frequency and speed frequency are evident.The low-frequency contribution to bending moment fluctuation peaks in the complete dispersion regime.展开更多
As a new method to cure acute respiratory distress syndrome (ARDS), high blood pressure and some illnesses related to the lung, NO has recently received more attention. Thermal plasmas produced by arc discharge can ...As a new method to cure acute respiratory distress syndrome (ARDS), high blood pressure and some illnesses related to the lung, NO has recently received more attention. Thermal plasmas produced by arc discharge can create medical NO, but the concentration of NO2 produced by arc discharge must be controlled simultaneously. This paper investigates the characteristics and regulations of NO production at different flow distribution by pulsed arc discharge in dry air with a special pulsed power, The experimental results show that the flow distribution has a considerable effect on the NO concentration, the stabilization of NO. The production of NO2 could be controlled and the ratio of NO2/NO was decreased to about 10% in the arc discharge. Therefore, the arc discharge could produce stable inhaled NO for medical treatment by changing the flow distribution.展开更多
文摘Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical example was used to testify the validity of the quenching tank model. In order to take tank parameters (agitation speed, position of directional flow baffle and coordinate position in quench zone) into account, an approach that combines the artificial neural network (ANN) with CFD method was developed to study the flow distribution in the quenching tank. The flow rate of the quenching medium shows a very good agreement between the ANN predicted results and the Fluent simulated data. Methods for the optimal design of the quenching tank can be used as technical support for industrial production.
基金Project(51405389)supported by the National Natural Science Foundation of ChinaProject(2014003)supported by the Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,China+1 种基金Project(3102015ZY024)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(108-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,China
文摘The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow field in two types of quench tanks(with or without agitation system) were calculated.The results show that the flow field in the quench tank without agitation system has not evident regularity.While as for the quench tank with agitation system,the flow fields in different parameters have certain regularity.The agitation tanks have a distinct advantage over the system without agitation.Proper process parameters were also obtained.Finally,the tank model established in this work was testified by an example from publication.This model with high accuracy is able to optimize the tank structures and can be helpful for industrial production and theoretical investigation in the fields of heat treatment of large complicated components.
基金Supported by the Doctoral Foundation of Xi'an Jiaotong University (No. DFXJTU2002-12) the Foundation for Excellent Doctoral Dissertation Author by Minister of Education, China (No. 199933).
文摘The flow maldistribution and the effect of different inlet configuration on the flow distribution in platefin heat exchangers were studied experimentally. It is found that the flow maldistribution is serious because of the defects of inlet configurations, while the inlet configuration and Reynolds number are the main factors affecting the flow distribution. The improved inlet configurations, which are the header with a two-stage distributing configuration and the guide vane with a fluid complementary cavity were proposed and tested in this paper. The experimental results show that the improved inlet configurations can effectively improve the performance of flow distribution in heat exchangers.
基金Supported by the National Natural Science Foundation of China (20476073), the State Key Laboratory of Chemical Engineering (SKL-ChE-08B03) and the Programs of Introducing Talents of Discipline to Universities 0306006).
文摘The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measured experimentally by the use of particle image velocimetry (PIV). The influences of gas flowrate, solution mass concentration, orifice interval and the angle between two bubble centers line and vertical direction on the flow field surrounding bubbles were discussed respectively by analyzing the velocity vector, velocity contours as well as individual velocity components. The results show that the liquid velocity both in front of two bubbles and behind increases with gas flowrate duo to shear-thinning effect of previous bubbles, whereas decreases with the increase of CMC concentration due to the increase of drag force acting on bubbles. The effect of the orifice interval on the flow field around two moving bubbles becomes gradually obvious as the interval becomes closer. Moreover, two adjacent side-by-side bubbles repulse each other during rising, leading to the practical interval between them increased somewhat above the orifice interval. When the distance between bubbles is less than the orifice interval 10 mm, the interaction between two neighboring bubbles changed from mutual repellence to attraction with the decrease of the angle of the line of linking two bubble centers to the vertical direction.
基金supported by the Shanghai Leading Academic Discipline Project(B604)the Henan Science and Technology Breakthrough Major Project(102102210440)+1 种基金the High School Funding Scheme for Key Young Teachersthe Education Department of Henan Province,2010
文摘A novel hood structure has been designed for the dust control system in the foundry in order to improve the working environment. A composite strategy has been applied for comparative analysis of the optimal venting volume and the airflow distribution between the conventional hood and the novel one in this study. A Computational Fluid Dynamic (CFD) method is used to simulate the airflow fields and dust-polluted air moving paths. The CFD results show that a two-outlet hood, with one outlet located on the left of the hood, is better for improving dust-polluted air than the hood with one outlet only. It can be concluded that the number of the outlets as well as their location on the hood has a significant influence on the air flow pattern in the hood. The optimal venting volume is also a major consideration that is discussed in the study. The venting volume should be designed by considering both the effective level of air flow velocity around the dust source and the energy saving. The optimal airflow distribution may reduce the turbulence in the hood system.
基金Project supported by Changwon National University in 2010
文摘Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall information only. However, detailed analysis is required to find effects of design parameters on the flow distribution. For this aspect, three-dimensional turbulent flow analysis was performed to assess turbulence model performance and effects of upstream pressure and branch pipe geometry. Three different turbulence models of standard k-e model, realizable k-e model and standard k-co yield similar results, indicating small effects of turbulence models on flow characteristics analysis. Geometric variations include area ratio of main and branch pipes, branch pipe diameter, and connection shape of main and branch pipes. Among these parameters, area ratio and branch diameter and shape show strong effect on flow distribution due to high friction and minor loss. Uniform flow distribution is one of common requirements in the branch piping system and this can be achieved with rather high total loss design.
基金Supported by Technology Center,China Tobacco Hunan Industrial Co.,Ltd.(KY2014KF0002)the National Natural Science Foundation of China(21536003)+2 种基金Innovative Research Team Development Plan-Ministry of Education of China(IRT1238)Key project of international®ional scientific and technology plan(2014WK2037)China Outstanding Engineer Training Plan for Students of Chemical Engineering&Technology in Hunan University(2011-40)
文摘An improved CFD model of gas flow and particle interception in a fiber material which fiber size is Y-shape was developed in this work. The porous medium model was used to build the model of the whole size of fiber filter medium. Mixture model was adopted. The algorithm of particle interception in the whole size of fiber filter medium was derived and UDF(User Defined Function) that described kinds of particle filtering mechanisms in filter fibrous media was added to the Fluent default conservation equation as source term for simulation. The inertial resistance of the filter was taken into consideration, which provided a more precise measurement of the smoke flow and the particle interception in the filter under higher smoke speed conditions. The commercial software, Fluent 6.3, was used to simulate the smoke flow and particle interception in the filter in a single suction. The velocity and pressure profiles of smoke or nicotine particle in the filter, as well as nicotine particle volume fraction profile were well simulated. Finally, the comparisons of nicotine particle filtration efficiency between Fluent simulation results in this work and experimental results, as well as the model prediction in the literature were made to validate the simulation model. The comparisons showed that the particle entrapment model from simulation results was in good agreement with that from the experimental results. In addition, the Fluent simulation results are closer to reality both at the beginning and the end of the smoke process comparing with the model predicted results in the literature.
文摘Accurate electric energy(EE)measurements and billing estimations in a power system necessitate the development of an energy flow distribution model.This paper summarizes the results of investigations on a new problem related to the determination of EE flow in a power system over time intervals ranging from minutes to years.The problem is referred to as the energy flow problem(EFP).Generally,the grid state and topology may fluctuate over time.An attempt to use instantaneous(not integral)power values obtained from telemetry to solve classical electrical engineering equations leads to significant modeling errors,particularly with topology changes.A promoted EFP model may be suitable in the presence of such topological and state changes.Herein,EE flows are determined using state estimation approaches based on direct EE measurement data in Watt-hours(Volt-ampere reactive-hours)provided by electricity meters.The EFP solution is essential for a broad set of applications,including meter data validation,zero unbalance EE billing,and nontechnical EE loss check.
基金Supported by the National Key R&D Program of China(2017YFB0603702)the Natural Science Foundation of Zhejiang Province(Y15E060014)+1 种基金the National Natural Science Foundation of China(51636007)Shanghai Young Teachers Development Program(10-16-301-801)
文摘Due to the increasing global demand for industrial gas, the development of large-scale cryogenic air separation systems has attracted considerable attention in recent years. Increasing the height of the adsorption bed in a vertical radial flow adsorber used in cryogenic air separation systems may efficiently increase the treatment capacity of the air in the adsorber. However, uniformity of the flow distribution of the air inside the adsorber would be deteriorated using the height-increasing method. In order to reduce the non-uniformity of the flow distribution caused by the excessive height of adsorption bed in a vertical radial flow adsorber, a novel parallel connection method is proposed in the present work. The experimental apparatus is designed and constructed; the Computational Fluid Dynamics(CFD) technique is used to develop a CFD-based model, which is used to analyze the flow distribution, the static pressure drop and the radial velocity in the newly designed adsorber. In addition, the geometric parameters of annular flow channels and the adsorption bed thickness of the upper unit in the parallelconnected vertical radial flow adsorber are optimized, so that the upper and lower adsorption units could be penetrated by air simultaneously. Comparisons are made between the height-increasing method and the parallel connection method with the same adsorber height. It is shown that using the parallel connection method could reduce the difference between the maximum and minimum radial static pressure drop by 86.2% and improve the uniformity by 80% compared with those of using the height-increasing method. The optimal thickness ratio of the upper and lower adsorption units is obtained as 0.966, in which case the upper and lower adsorption units could be penetrated by air simultaneously, so that the adsorbents in adsorption space could be used more efficiently.
基金Project supported by National Natural Science Foundation of China,No.39270852.
文摘AIM To study the effect of leukocyteendothelium interaction (LEI) on the flow anddistribution of leukocytes in microcirculationunder physiological condition.METHODS A microcirculation image multipleparameter computer analysis system (MIMPCAS)was used to study the flow and distribution ofleukocytes in mesentery microcirculation of ratsIn vivo.RESULTS The difference of visible leukocyteflux (VLF) was as high as 131 times in thearterioles and venules with similar diameter andblood velocity. The visible leukocytes rolledalong the blood vessel wall as a" jerky"movement. The frequency distribution of thevisible leukocyte velocity (VLV) showed a "twopeak" Curve. The low peak value was at 10 pm/ s-- 15 pm/ s while the high peak fell between25 pm/ s-- 30 pm/ s. With the increase of diameterof venules, VLF increased while the VLVremained at the same level. With the increase ofRBC velocity, VLV trends to elevate and VLF tofal I down.CONCLUSION The results herein might providea basic theory for the study on the mechanism ofLEI under physiological condition and novelmethods for the prevention and treatment of highLEI in many pathological
基金Project supported by the National Natural Science foundation of China(No.51079095)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51021004)
文摘This paper uses the Oseen transformation to solve the differential equations governing motion of the vertical linear gradient flow distribution close to a wall surface. The Navier-Stokes equations are used to consider the inertia term along the flow direction. A novel contour integral method is used to solve the complex Airy function. The boundary conditions of linear gradient flow distribution for finite problems are determined. The vorticity function, the pressure function, and the turbulent velocity profiles are provided, and the stability of particle trajectories is studied. An Lx-function form of the third derivative circulation is used to to simplify the solution. Theoretical results are compared with the experimental measurements with satisfactory agreement.
文摘The flow of pseudoplastic power-law fluids with different flow indexes at a microchannel plate was studied using computational fluid dynamic simulation.The velocity distribution along the microchannel plate and especially in the microchannel slits,flow pattern along the outlet arc and the pressure drop through the whole of microchannel plate were investigated at different power-law flow indexes.The results showed that the velocity profile in the microchannel slits for low flow index fluids was similar to the plug flow and had uniform pattern.Also the power-law fluids with lower flow indexes had lower stagnation zones near the outlet of the microchannel plate.The pressure drop through the microchannel plate showed huge differences between the fluids.The most interesting result was that the pressure drops for power-law fluids were very smaller than that of Newtonian fluids.In addition,the heat transfer of the fluids through the microchannel with different channel numbers in a wide range of Reynolds number was investigated.For power-law fluid with flow index(n=0.4),the Nusselt number increases continuously as the number of channels increases.The results highlight the potential use of using pseudoplastic fluids in the microheat exchangers which can lower the pressure drop and increase the heat transfer efficiency.
基金the State Key Basic Research Program of China (No. 2012CB214905)Key Program of National Natural Science Foundation of China (No. 500834006)the National Natural Science Foundation of China (No. 50974119) for financial support
文摘Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in both cross section and longitudinal section within cyclonic zone was studied for different circulating volumes. The cross sectional vortex was also analyzed. The results show that in cross section as the circulating volume increases from 0.187 to 0.350 m 3 /h, the flow velocity ranges from 0 to 0.68 m/s. The flow field is mainly a non-vortex potential flow that forms a free vortex without outside energy input. In the cyclonic region the vortex deviates from the center of the flotation column because a single tangential opening introduces circulating fluid into the column. The tangential component of the velocity plays a defining role in the cross section. In the longitudinal section the velocity ranges from 0 to 0.08 m/s. The flow velocity increases as does the circulating volume. Advantageous mineral separation conditions arise from the combined effects of cyclonic flow in cross and longitudinal section.
基金Project(2010AA065201)supported by the High Technology Research and Development Program of ChinaProject(2013zzts038)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(ZB2011CBBCe1)supported by the Major Program for Aluminum Corporation of China Limited,China
文摘Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.
基金the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX-SW-352)
文摘In the upper reaches of Yangtze River and other rivers of southwestern China, the debris flows develop and lead to most serious disasters because of the various landforms, complex geological structures and abundant rainfall. The distribution of debris flows has regularity in the regions with different landform, geological structure, and precipitation. The regularities of distribution of debris flows are as following: (1) distributed in transition belts of different morphologic regions; (2) distributed in the area with strong stream trenching; (3) distributed along fracture zones and seismic belts: (4) distributed in the area with abundant precipitation; (5) distribution of debris flow is azonal. The activity of abundant debris flows not only brings harm to Towns, Villages and Farmlands, Main Lines of Communication, Water-Power Engineering, Stream Channels etc., but also induces strong water and soil loss. According to the present status of debris flow prevention, the problems in disasters mitigation and soil conservancy are found out, and the key works are brought up for the future disasters prevention and soil conservancy.
文摘The local gas-flow behavior is almost unknown for low pressure plasma systems, except parallel plate reactors for semiconductor purposes. To overcome this lack of knowledge, this study starts with the influence investigation of the gas feed-in systems technical layout on the homogeneity of the gas supply for large volume plasma enhanced chemical vapor deposition (PECVD) chambers. Computational fluid dynamics (CFD) simulations are used as a tool to determine velocity and pressure distribution inside the gas feed-in pipe as well as in the PECVD-chamber itself. The parameters varied were: flow rate, pipe length, number of holes, hole diameter and aspect ratio of the pipe section. The calculated pressure values are compared with the experimentally measured ones to validate the simulation results. An excellent conformity of the calculated and measured pressures is observed. With the aim to evaluate the homogeneity of gas distribution through the pipe holes the nonuniformity coefficient (Φ) was created. The results show the influence of each layout parameter in the homogeneity of the gas distribution. Hence in future correct technical layouts of gas feed-in systems can easily be applied. With these results construction guidelines has been formulated.
文摘For the first time, an important ingested flow phenomenon was discovered inexperiments at the film cooling hole exit. The trends of 3-D flow fie1ds and the fullnessfactor, Ci, were discussed in detail over a wide range of now parameters and the geometryof fan-shaped holes at this exit plane. It has been confirmed that the main reason of creat-ing longitudinal bound vortices is not the flow iri the hole but the mixing of mainstreamand jet at its exit.
文摘Objective To investigate the flow distribution in plate fin heat exchangers and optimize the design of header configuration for plate fin heat exchangers. Methods A mathematical model of header was proposed. The effects of the header configuration on the flow distribution in plate fin heat exchangers were investigated by CFD. The second header configuration with a two stage distributing structure was brought forward to improve the performance of flow distribution. Results It is found that the flow maldistribution is very serious in the direction of header length for the conventional header used in industry. The numerical predictions indicate that the improved header configurations can effectively improve the performance of flow distribution in plate fin heat exchangers. Conclusion The numerical simulation confirms that CFD should be a suitable tool for predicting the flow distribution. The method has a wide variety of applications in the design of plate fin heat exchangers.
文摘The bending moment acting on the overhung shaft of a gas-sparged vessel stirred by a Rushton turbine,as one of the results of fluid and structure interactions in stirred vessels,was measured using a moment sensor equipped with digital telemetry.An analysis of the shaft bending moment amplitude shows that the amplitude distribution of the bending moment,which indicates the elasticity nature of shaft material against bending deformation,follows the Weibull distribution.The trends of amplitude mean,standard deviation and peak deviation characteristics manifest an "S" shape versus gas flow.The "S" trend of the relative mean bending moment over gas flow rate,depending on the flow regime in gas-liquid stirred vessels,resulted from the competition among the nonuniformity of bubbly flow around the impeller,the formation of gas cavities behind the blades,and the gas direct impact on the impeller when gas is introduced.A further analysis of the bending moment power spectral density shows that the rather low frequency and speed frequency are evident.The low-frequency contribution to bending moment fluctuation peaks in the complete dispersion regime.
基金National Natural Science Foundation of China (Nos.50677026 and 50347009)the National Key Technologies R&D Program Special Foundation of China (No.2003A12)
文摘As a new method to cure acute respiratory distress syndrome (ARDS), high blood pressure and some illnesses related to the lung, NO has recently received more attention. Thermal plasmas produced by arc discharge can create medical NO, but the concentration of NO2 produced by arc discharge must be controlled simultaneously. This paper investigates the characteristics and regulations of NO production at different flow distribution by pulsed arc discharge in dry air with a special pulsed power, The experimental results show that the flow distribution has a considerable effect on the NO concentration, the stabilization of NO. The production of NO2 could be controlled and the ratio of NO2/NO was decreased to about 10% in the arc discharge. Therefore, the arc discharge could produce stable inhaled NO for medical treatment by changing the flow distribution.