Sand ripples are common bedforms. The formation of sand ripples is related to flow conditions; different flow conditions cause different ripple geometries. The main aim of this study was to assess the relationship bet...Sand ripples are common bedforms. The formation of sand ripples is related to flow conditions; different flow conditions cause different ripple geometries. The main aim of this study was to assess the relationship between flow intensity and two-dimensional ripple geometry characteristics. The experiments were carried out in a laboratory flume with natural sand whose bulk density Ps was 2 650 kg/m3 and median diameter D50 was 0.41 mm. The Froude number (Fr), a flow intensity parameter, varied from 0.16 to 0.53, entirely within the subcritical range. Two-dimensional sand ripple geometry was measured and processed via statistical methods. The probability distributions of ripple length and height were obtained with different flow conditions. Through dimensionless analysis, the relationship between the flow intensity parameter (grain size Reynolds number Re. ) and the sand ripple geometry characteristic length ( ∧ ) and height ( △ ) was analyzed, and two formulas were obtained: ∧/D50 = 191.76Re 0.3 and △/D50 = 1.97Re 1.3, which are consistent with previous research results.展开更多
Through practical sampling survey for the overseas travelers in the 12 tourist hotspot cities of China, the analytical results of database of the spatial changes for overseas travelers have been established with the h...Through practical sampling survey for the overseas travelers in the 12 tourist hotspot cities of China, the analytical results of database of the spatial changes for overseas travelers have been established with the help of the software Visual FoxPro. The New concepts such as transferring state, which can be used to study the spatial flow intensity of travelers. is first put forward By analyzing the statistical results, the spatial flow intensity of 12 tourist hotspot cities in China for overseas travelers has been probed At last, a practical research of spatial flow intensity for overseas tourists is carried out in Beijing──the of tourist hotspots of China展开更多
The secondary flow attracts wide concerns in the aeroengine compressors since it has become one of the major loss sources in modern high-performance compressors.But the research about the quantitative relationship bet...The secondary flow attracts wide concerns in the aeroengine compressors since it has become one of the major loss sources in modern high-performance compressors.But the research about the quantitative relationship between secondary flow and inviscid blade force needs to be more detailed.In this paper,a database of 889 three-dimensional linear cascades was built.An indicator,called Secondary Flow Intensity(SFI),was used to express the loss caused by secondary flow.The quantitative relationship between the SFI and inviscid blade force deterioration was researched.Blade oil flow and Computation Fluid Dynamics(CFD)results of some cascades were also used to cross-validate.Results suggested that all numerical cascade cases can be divided into 3 clusters by the SFI,which are called Clusters A,B and C in the order of the increasing SFI indicator.The corner stall,known as the strong corner separation,only happens when the SFI is high.Both calculations and oil flow experiments show that the SFI would stay at a low level if the vortex core at the endwall surface does not appear.The strong interaction of Kutta condition and endwall cross-flow is considered the dominant mechanism of higher secondary flow losses,rather than the secondary flow penetration depth on the suction surface.In conclusion,the inviscid blade force spanwise deterioration is strongly related to the SFI.The correlation of the SFI and spanwise inviscid blade force deterioration is given in this paper.The correlation could provide a quantitative reference for estimating secondary flow losses in the design.展开更多
Channel confluences are universally present in nature. They can be divided into two types: asymmetrical river confluences and symmetric river confluences. The latter is also called as the Y-shaped confluences. Most o...Channel confluences are universally present in nature. They can be divided into two types: asymmetrical river confluences and symmetric river confluences. The latter is also called as the Y-shaped confluences. Most of previous work has paid more attention to the asymmetrical river confluences, but few studies have been conducted on the Y-shaped confluences. In this article, the effects of bed discordance on the flow patterns at "Y" shaped open-channel confluences were studied by using a 3-D numerical simulation. It is proved that the model can undertake quantitative assessment of the flow at confluences. The results indicate that there are a lot of differences between the Y-shaped confluence and asymmetrical confluence. The discordant bed height plays an important role at the Y-shaped junction.展开更多
A generalized hend flow model, treating a 90° single bend and 60° continuous hends, was designed to quantitatively describe 3-D turhulenee mechanism of circulating notfully-developed flow in open channels wi...A generalized hend flow model, treating a 90° single bend and 60° continuous hends, was designed to quantitatively describe 3-D turhulenee mechanism of circulating notfully-developed flow in open channels with hends. The 3-D fluctuating veloeities of turbulent flow were measured and analyzed with a 3 D acoustic-Doppler velocimeter. Formula for 3 D turbulent intensity was derived using the dimension analysis approaeh. Expressions of vertical turbulent intensity distributions were obtained with the multivariant-rcgression theo ry, whieh agree with experiment data. Distrihutions of turbulent intensity and turbulent stress were characterized, and their relationships were concluded. In the bend-turbulent flow core region, longitudinal and lateral turbulent-intensity distri hutions are coincident with linear distribution, hut in nearwall region are coincident with the Gamma distribution. Verotical turbulent intensity distributions are coincident with the Rayleigh distribution. Herein, it is concluded that the bend turbulence is anisotropic.展开更多
Definition of hydraulic geometry of navigable canals and its expression are studied in this paper.The hydrodynamic and morphologic characteristics of navigable canals are analyzed on the basis of the data collected fr...Definition of hydraulic geometry of navigable canals and its expression are studied in this paper.The hydrodynamic and morphologic characteristics of navigable canals are analyzed on the basis of the data collected from field surveys conducted at two segments of the Grand Canal in Jiangsu Province,China.The channel morphologic factor and the ship hydrodynamic factor are adopted to describe the hydraulic geometry relation of navigable canals.The correlation analysis shows that the ship hydrodynamics can be a dominant factor influencing the channel evolution with larger determination coefficient.Furthermore,the undetermined index in the proposed hydraulic geometry relation is also discussed,which indicates that the index related to the intensity of water flow(qualitatively reflected by the integrated ship flow intensity)is within a range of 0.5 to 1.0.展开更多
A novel criterion of mixing time in gas-stirred ladle systems was proposed in this paper. The essential difference between the previous criterion and the present one is that the former is based on the concentration it...A novel criterion of mixing time in gas-stirred ladle systems was proposed in this paper. The essential difference between the previous criterion and the present one is that the former is based on the concentration itself while the latter is based on the variation rate of the concentration, which reflects the mixing efficiency directly. Experiment was carried out in an acrylic glass vessel with bottom blowing, and the tracer concentration was monitored by electrical conductivity probes. The mixing time obtained through the new criterion is approximately 20% less than that obtained through the 95% criterion, and the deviations of mixing times calculated from the new criterion are smaller than that from the previous one under the same conditions.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50879020)the Ph.D.Discipline-New Teachers Foundation of the Ministry Education of China (Grant No. 200802941028)
文摘Sand ripples are common bedforms. The formation of sand ripples is related to flow conditions; different flow conditions cause different ripple geometries. The main aim of this study was to assess the relationship between flow intensity and two-dimensional ripple geometry characteristics. The experiments were carried out in a laboratory flume with natural sand whose bulk density Ps was 2 650 kg/m3 and median diameter D50 was 0.41 mm. The Froude number (Fr), a flow intensity parameter, varied from 0.16 to 0.53, entirely within the subcritical range. Two-dimensional sand ripple geometry was measured and processed via statistical methods. The probability distributions of ripple length and height were obtained with different flow conditions. Through dimensionless analysis, the relationship between the flow intensity parameter (grain size Reynolds number Re. ) and the sand ripple geometry characteristic length ( ∧ ) and height ( △ ) was analyzed, and two formulas were obtained: ∧/D50 = 191.76Re 0.3 and △/D50 = 1.97Re 1.3, which are consistent with previous research results.
基金Under the auspices of the National Natural Science Foundation of China! 49571027
文摘Through practical sampling survey for the overseas travelers in the 12 tourist hotspot cities of China, the analytical results of database of the spatial changes for overseas travelers have been established with the help of the software Visual FoxPro. The New concepts such as transferring state, which can be used to study the spatial flow intensity of travelers. is first put forward By analyzing the statistical results, the spatial flow intensity of 12 tourist hotspot cities in China for overseas travelers has been probed At last, a practical research of spatial flow intensity for overseas tourists is carried out in Beijing──the of tourist hotspots of China
基金the National Science and Technology Major Project,China(Nos.2017-I-0005-0006&2019-II-0020-0041).
文摘The secondary flow attracts wide concerns in the aeroengine compressors since it has become one of the major loss sources in modern high-performance compressors.But the research about the quantitative relationship between secondary flow and inviscid blade force needs to be more detailed.In this paper,a database of 889 three-dimensional linear cascades was built.An indicator,called Secondary Flow Intensity(SFI),was used to express the loss caused by secondary flow.The quantitative relationship between the SFI and inviscid blade force deterioration was researched.Blade oil flow and Computation Fluid Dynamics(CFD)results of some cascades were also used to cross-validate.Results suggested that all numerical cascade cases can be divided into 3 clusters by the SFI,which are called Clusters A,B and C in the order of the increasing SFI indicator.The corner stall,known as the strong corner separation,only happens when the SFI is high.Both calculations and oil flow experiments show that the SFI would stay at a low level if the vortex core at the endwall surface does not appear.The strong interaction of Kutta condition and endwall cross-flow is considered the dominant mechanism of higher secondary flow losses,rather than the secondary flow penetration depth on the suction surface.In conclusion,the inviscid blade force spanwise deterioration is strongly related to the SFI.The correlation of the SFI and spanwise inviscid blade force deterioration is given in this paper.The correlation could provide a quantitative reference for estimating secondary flow losses in the design.
基金supported by the National Natural Science Foundation of China(Grant No. 30490235).
文摘Channel confluences are universally present in nature. They can be divided into two types: asymmetrical river confluences and symmetric river confluences. The latter is also called as the Y-shaped confluences. Most of previous work has paid more attention to the asymmetrical river confluences, but few studies have been conducted on the Y-shaped confluences. In this article, the effects of bed discordance on the flow patterns at "Y" shaped open-channel confluences were studied by using a 3-D numerical simulation. It is proved that the model can undertake quantitative assessment of the flow at confluences. The results indicate that there are a lot of differences between the Y-shaped confluence and asymmetrical confluence. The discordant bed height plays an important role at the Y-shaped junction.
文摘A generalized hend flow model, treating a 90° single bend and 60° continuous hends, was designed to quantitatively describe 3-D turhulenee mechanism of circulating notfully-developed flow in open channels with hends. The 3-D fluctuating veloeities of turbulent flow were measured and analyzed with a 3 D acoustic-Doppler velocimeter. Formula for 3 D turbulent intensity was derived using the dimension analysis approaeh. Expressions of vertical turbulent intensity distributions were obtained with the multivariant-rcgression theo ry, whieh agree with experiment data. Distrihutions of turbulent intensity and turbulent stress were characterized, and their relationships were concluded. In the bend-turbulent flow core region, longitudinal and lateral turbulent-intensity distri hutions are coincident with linear distribution, hut in nearwall region are coincident with the Gamma distribution. Verotical turbulent intensity distributions are coincident with the Rayleigh distribution. Herein, it is concluded that the bend turbulence is anisotropic.
基金the National Natural Science Foundation of China(No.51479035)the Scientific Research Foundation of Graduate School of Southeast University(No.YBPY1883)
文摘Definition of hydraulic geometry of navigable canals and its expression are studied in this paper.The hydrodynamic and morphologic characteristics of navigable canals are analyzed on the basis of the data collected from field surveys conducted at two segments of the Grand Canal in Jiangsu Province,China.The channel morphologic factor and the ship hydrodynamic factor are adopted to describe the hydraulic geometry relation of navigable canals.The correlation analysis shows that the ship hydrodynamics can be a dominant factor influencing the channel evolution with larger determination coefficient.Furthermore,the undetermined index in the proposed hydraulic geometry relation is also discussed,which indicates that the index related to the intensity of water flow(qualitatively reflected by the integrated ship flow intensity)is within a range of 0.5 to 1.0.
基金financially supported by the National Natural Science Foundation of China (Nos. 51274030 and 51204001)
文摘A novel criterion of mixing time in gas-stirred ladle systems was proposed in this paper. The essential difference between the previous criterion and the present one is that the former is based on the concentration itself while the latter is based on the variation rate of the concentration, which reflects the mixing efficiency directly. Experiment was carried out in an acrylic glass vessel with bottom blowing, and the tracer concentration was monitored by electrical conductivity probes. The mixing time obtained through the new criterion is approximately 20% less than that obtained through the 95% criterion, and the deviations of mixing times calculated from the new criterion are smaller than that from the previous one under the same conditions.