Since 2002, the Soil and Water Conservation Bureau, which is responsible for the conservation and administrative management of hillside in Taiwan, has been cooperating with Feng Chia University. Together, they have su...Since 2002, the Soil and Water Conservation Bureau, which is responsible for the conservation and administrative management of hillside in Taiwan, has been cooperating with Feng Chia University. Together, they have successfully carried out the establishment and maintenance of 13 fixed debris flow monitoring stations over the island and 2 mobile debris flow monitoring stations. During July 2004, a powerful southwest air current brought by Mindulle Typhoon caused serious flood in central and southern Taiwan. This paper aims to describe the establishment of debris flow monitoring systems in Taiwan and the observation of the debris flow event during Mindulle Typhoon at Aiyuzi River in Shenmu Village, Nantou County by the monitoring station.展开更多
Liquid composite moulding (LCM) processes are used to manufacture high quality and complex-shaped composite parts in the automotive, marine, aerospace and civil industries. On-line sensing plays an important role in c...Liquid composite moulding (LCM) processes are used to manufacture high quality and complex-shaped composite parts in the automotive, marine, aerospace and civil industries. On-line sensing plays an important role in controlling the quality of the final product in the LCM manufacturing environment. The long-period fiber grating (LPG) technology, a new real-time fiber optic sensor system, was developed to monitor the flow front progression. The sensor operation and characterization under various process conditions were discussed in detail. The experimental results showed that LPG sensors were robust and reliable to detect the arrival of resin at pre-selected locations in structures with low-medium fiber volume fraction; however were limited at different depths in structures with high fiber volume fraction.展开更多
Convenient non-invasive flow monitoring would facilitate the operation and control in microfluidic chips,but is challenging due to the small space of microchannels and complex operation required in traditional optical...Convenient non-invasive flow monitoring would facilitate the operation and control in microfluidic chips,but is challenging due to the small space of microchannels and complex operation required in traditional optical methods.In this work,we propose a novel non-invasive strategy to probe microfluidic flows via streaming potential phenomenon.By sealing one side of the microchannel with a piece of hydrogel film,streaming potential inside the channel can be clearly detected by electrodes at outer surface of the hydrogel due to ion diffusion in the hydrogel.Flow is detected without sensors contacting with the internal liquid.Moreover,the electrodes shape like a tiny probe,which can move around mapping the flow distribution in a chip with the spatial resolution of 1 mm and flow rate detection limit of 3μL·min–1.Bubbles inside the channels can also be detected,due to the fluctuation of streaming voltage when gas-liquid interface flows through the electrode,showing an easy and potential way for multi-functional flow monitoring in microfluidic chips.展开更多
Laser speckle imaging is a common technique to monitor blood flow.The fluctuations in speckle intensity can be related to the blood flow by calculating the speckle contrast,the ratio between the standard deviation of ...Laser speckle imaging is a common technique to monitor blood flow.The fluctuations in speckle intensity can be related to the blood flow by calculating the speckle contrast,the ratio between the standard deviation of speckle fluctuations and the average intensity.However,this simple statistic calculation is easily affected by motion artifacts.In this study,we applied sample entropy analysis instead of calculating standard deviations of the speckle fluctuations.Similar to the traditional method,sample entropy-based speckle contrast increases linearly with flow rate but was shown to be more immune to sudden movements during an upper arm occlusion test.展开更多
基金Taiwan Soil and Water Conservation Bureau (SWCB- 95-164)
文摘Since 2002, the Soil and Water Conservation Bureau, which is responsible for the conservation and administrative management of hillside in Taiwan, has been cooperating with Feng Chia University. Together, they have successfully carried out the establishment and maintenance of 13 fixed debris flow monitoring stations over the island and 2 mobile debris flow monitoring stations. During July 2004, a powerful southwest air current brought by Mindulle Typhoon caused serious flood in central and southern Taiwan. This paper aims to describe the establishment of debris flow monitoring systems in Taiwan and the observation of the debris flow event during Mindulle Typhoon at Aiyuzi River in Shenmu Village, Nantou County by the monitoring station.
基金This work was supported by the National High-Tech Foundation(863)under the gr ant 2001AA335020.
文摘Liquid composite moulding (LCM) processes are used to manufacture high quality and complex-shaped composite parts in the automotive, marine, aerospace and civil industries. On-line sensing plays an important role in controlling the quality of the final product in the LCM manufacturing environment. The long-period fiber grating (LPG) technology, a new real-time fiber optic sensor system, was developed to monitor the flow front progression. The sensor operation and characterization under various process conditions were discussed in detail. The experimental results showed that LPG sensors were robust and reliable to detect the arrival of resin at pre-selected locations in structures with low-medium fiber volume fraction; however were limited at different depths in structures with high fiber volume fraction.
基金supported by the National Natural Science Foundation of China(Grant Nos.51976141,52006123,62161160311).
文摘Convenient non-invasive flow monitoring would facilitate the operation and control in microfluidic chips,but is challenging due to the small space of microchannels and complex operation required in traditional optical methods.In this work,we propose a novel non-invasive strategy to probe microfluidic flows via streaming potential phenomenon.By sealing one side of the microchannel with a piece of hydrogel film,streaming potential inside the channel can be clearly detected by electrodes at outer surface of the hydrogel due to ion diffusion in the hydrogel.Flow is detected without sensors contacting with the internal liquid.Moreover,the electrodes shape like a tiny probe,which can move around mapping the flow distribution in a chip with the spatial resolution of 1 mm and flow rate detection limit of 3μL·min–1.Bubbles inside the channels can also be detected,due to the fluctuation of streaming voltage when gas-liquid interface flows through the electrode,showing an easy and potential way for multi-functional flow monitoring in microfluidic chips.
基金GIST Research Institute(GRI)funded by GIST in 2019 and 2020Brain Research Program(2016M3C7A1905475)+1 种基金Basic Research Program(2018R1A2B6006797)through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICTKBRI basic research program through Korea Brain Research Institute funded by Ministry of Science and ICT(21-BR-03-05)。
文摘Laser speckle imaging is a common technique to monitor blood flow.The fluctuations in speckle intensity can be related to the blood flow by calculating the speckle contrast,the ratio between the standard deviation of speckle fluctuations and the average intensity.However,this simple statistic calculation is easily affected by motion artifacts.In this study,we applied sample entropy analysis instead of calculating standard deviations of the speckle fluctuations.Similar to the traditional method,sample entropy-based speckle contrast increases linearly with flow rate but was shown to be more immune to sudden movements during an upper arm occlusion test.