The flow past an in-line forced oscillating square cylinder at Reynolds number of 200 is studied using an in-house code, named constrained interpolation profile method developed in Zhejiang University (CIP-ZJU). The...The flow past an in-line forced oscillating square cylinder at Reynolds number of 200 is studied using an in-house code, named constrained interpolation profile method developed in Zhejiang University (CIP-ZJU). The model is established in the Cartesian coordinate system using the CIP method to discretise the Navier-Stokes equations. The fluid-structure interaction is treated as a multiphase flow of the liquid and solid phases to be solved simultaneously. An immersed boundary method is used to deal with the boundary of the solid body. The CFD model is first applied to the computation of the flow past a fixed square cylinder for its validation. Computations are then performed for the flow past a square cylinder oscillating in the streamwise direction. Considerable attention is paid to the symmetric and anti-symmetric modes of the vortex shedding in the oscillating square cylinder wake. Various oscillation amplitudes and frequencies are simulated and their effects on the vortex shedding modes are analyzed via Lissajous patterns of the unsteady lift coefficient. The relationship among the lift coefficient, the drag coefficient and the lock-on range is also investigated quantitatively.展开更多
In this paper,numerical sensitivity analysis with respect to the Reynolds number for the flow past obstacle problem is presented.To carry out such analysis,at each time step,we need to solve the incompressible Navier-...In this paper,numerical sensitivity analysis with respect to the Reynolds number for the flow past obstacle problem is presented.To carry out such analysis,at each time step,we need to solve the incompressible Navier-Stokes equations on irregular domains twice,one for the primary variables;the other is for the sensitivity variables with homogeneous boundary conditions.The Navier-Stokes solver is the augmented immersed interface method for Navier-Stokes equations on irregular domains.One of the most important contribution of this paper is that our analysis can predict the critical Reynolds number at which the vortex shading begins to develop in the wake of the obstacle.Some interesting experiments are shown to illustrate how the critical Reynolds number varies with different geometric settings.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51209184,51479175 and 51679212)the Natural Science Foundation of Zhejiang Province(Grant No.LR16E090002)
文摘The flow past an in-line forced oscillating square cylinder at Reynolds number of 200 is studied using an in-house code, named constrained interpolation profile method developed in Zhejiang University (CIP-ZJU). The model is established in the Cartesian coordinate system using the CIP method to discretise the Navier-Stokes equations. The fluid-structure interaction is treated as a multiphase flow of the liquid and solid phases to be solved simultaneously. An immersed boundary method is used to deal with the boundary of the solid body. The CFD model is first applied to the computation of the flow past a fixed square cylinder for its validation. Computations are then performed for the flow past a square cylinder oscillating in the streamwise direction. Considerable attention is paid to the symmetric and anti-symmetric modes of the vortex shedding in the oscillating square cylinder wake. Various oscillation amplitudes and frequencies are simulated and their effects on the vortex shedding modes are analyzed via Lissajous patterns of the unsteady lift coefficient. The relationship among the lift coefficient, the drag coefficient and the lock-on range is also investigated quantitatively.
基金The first and second authors are partially supported by US-ARO grant 49308-MAUS-AFSOR grant FA9550-06-1-0241+2 种基金The second author is also partially supported by US-NSF grant DMS-0911434the US-NIH grant 096195-01,and CNSF 11071123The third author is partially supported by the Hong Kong RGC Grant HKBU201710。
文摘In this paper,numerical sensitivity analysis with respect to the Reynolds number for the flow past obstacle problem is presented.To carry out such analysis,at each time step,we need to solve the incompressible Navier-Stokes equations on irregular domains twice,one for the primary variables;the other is for the sensitivity variables with homogeneous boundary conditions.The Navier-Stokes solver is the augmented immersed interface method for Navier-Stokes equations on irregular domains.One of the most important contribution of this paper is that our analysis can predict the critical Reynolds number at which the vortex shading begins to develop in the wake of the obstacle.Some interesting experiments are shown to illustrate how the critical Reynolds number varies with different geometric settings.