期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Flow pattern identification in oil wells by electromagnetic image logging 被引量:3
1
作者 Liu Zaibin Wu Xiling 《Petroleum Science》 SCIE CAS CSCD 2012年第3期303-309,共7页
Petroleum production logging needs to determine the interpretation models first and flow pattern identification is the foundation, but traditional flow pattern identification methods have some limitations. In this pap... Petroleum production logging needs to determine the interpretation models first and flow pattern identification is the foundation, but traditional flow pattern identification methods have some limitations. In this paper, a new method of flow pattern identification in oil wells by electromagnetic image logging is proposed. First, the characteristics of gas-water and oil-water flow patterns in horizontal and vertical wellbores are picked up. Then, the continuous variation of the two phase flow pattern in the vertical and horizontal pipe space is discretized into continuous fluid distribution models in the pipeline section. Second, the electromagnetic flow image measurement responses of all the eight fluid distribution models are simulated and the characteristic vector of each response is analyzed in order to distinguish the fluid distribution models. Third, the time domain changes of the fluid distribution models in the pipeline section are used to identify the flow pattern. Finally, flow simulation experiments using electromagnetic flow image logging are operated and the experimental and simulated data are compared. The results show that the method can be used for flow pattern identification of actual electromagnetic image logging data. 展开更多
关键词 Electromagnetic image logging two phase flow flow pattern identification fluid distribution model
下载PDF
An adaptive electrical resistance tomography sensor with flow pattern recognition capability 被引量:4
2
作者 WANG Pai LI Yang-bo +2 位作者 WANG Mei QIN Xue-bin LIU Lang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期612-622,共11页
The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern ch... The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern changes during the real-time detection of two-phase flow. In view of this problem, an adaptive ERT sensor with a dynamic structure is proposed. The electrodes of the ERT sensor are arranged in an array structure, the flow pattern recognition technique is introduced into the ERT sensor design and accordingly an ERT flow pattern recognition method based on signal sparsity is proposed. This method uses the sparse representation of the signal to express the sampling voltage of the ERT system as a sparse combination and find its sparse solution to achieve the classification of different flow patterns. With the introduction of flow identification information, the sensor has an intelligent function of adaptively and dynamically adapting the sensor structure according to the real-time flow pattern change. The experimental results show that the sensor can automatically identify four typical flow patterns: core flow, bubble flow, laminar flow and circulation flow with recognition rates of 91%, 93%, 90% and 88% respectively. For different flow patterns, the dynamically optimized sensor can significantly improve the quality of ERT image reconstruction. 展开更多
关键词 electrical resistance tomography adaptive sensor sparse representation flow pattern identification
下载PDF
Time-Frequency Signal Processing for Gas-Liquid Two Phase Flow Through a Horizontal Venturi Based on Adaptive Optimal-Kernel Theory 被引量:10
3
作者 孙斌 王二朋 +2 位作者 丁洋 白宏震 黄咏梅 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期243-252,共10页
A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal o... A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal of gas-liquid two-phase flow was preprocessed,and then the AOK theory was used to analyze the dynamic differ-ential pressure signal.The mechanism of two-phase flow was discussed through the time-frequency spectrum.On the condition of steady water flow rate,with the increasing of gas flow rate,the flow pattern changes from bubbly flow to slug flow,then to plug flow,meanwhile,the energy distribution of signal fluctuations show significant change that energy transfer from 15-35 Hz band to 0-8 Hz band;moreover,when the flow pattern is slug flow,there are two wave peaks showed in the time-frequency spectrum.Finally,a number of characteristic variables were defined by using the time-frequency spectrum and the ridge of AOK.When the characteristic variables were visu-ally analyzed,the relationship between different combination of characteristic variables and flow patterns would be gotten.The results show that,this method can explain the law of flow in different flow patterns.And characteristic variables,defined by this method,can get a clear description of the flow information.This method provides a new way for the flow pattern identification,and the percentage of correct prediction is up to 91.11%. 展开更多
关键词 adaptive optimal-kernel two-phase flow time-frequency spectrum time-frequency ridge flow pattern identification
下载PDF
Dynamic Visualization Approach of the Multiphase Flow Using Electrical Capacitance Tomography 被引量:1
4
作者 王泽璞 陈琪 +2 位作者 王雪瑶 李志宏 韩振兴 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第2期380-388,共9页
Identifying the flow patterns is vital for understanding the complicated physical mechanisms in multiphase flows.For this purpose,electrical capacitance tomography(ECT) technique is considered as a promising visualiza... Identifying the flow patterns is vital for understanding the complicated physical mechanisms in multiphase flows.For this purpose,electrical capacitance tomography(ECT) technique is considered as a promising visualization method for the flow pattern identification,in which image reconstruction algorithms play an important role.In this paper,a generalized dynamic reconstruction model,which integrates ECT measurement information and physical evolution information of the objects of interest,was presented.A generalized objective functional that simultaneously considers the spatial constraints,temporal constraints and dynamic evolution information of the objects of interest was proposed.Numerical simulations and experiments were implemented to evaluate the feasibility and efficiency of the proposed algorithm.For the cases considered in this paper,the proposed algorithm can well reconstruct the flow patterns,and the quality of the reconstructed images is improved,which indicates that the proposed algorithm is competent to reconstruct the flow patterns in the visualization of multiphase flows. 展开更多
关键词 electrical capacitance tomography VISUALIZATION flow pattern identification dynamic reconstruction algorithm
下载PDF
Experimental study of gas-water elongated bubble flow during production logging 被引量:1
5
作者 Lu Jing Wu Xiling 《Petroleum Science》 SCIE CAS CSCD 2011年第2期157-162,共6页
In order to improve the interpretation of production log data on gas-water elongated bubble (EB) flow in horizontal wells, a multi-phase flow simulation device was set up to conduct a series of measurement experimen... In order to improve the interpretation of production log data on gas-water elongated bubble (EB) flow in horizontal wells, a multi-phase flow simulation device was set up to conduct a series of measurement experiments using air and tap water as test media, which were measured using a real production logging tool (PLT) string at different deviations and in different mixed flow states. By understanding the characteristics and mechanisms of gas-water EB flow in transparent experimental boreholes during production logging, combined with an analysis of the production log response characteristics and experimental production logging flow pattern maps, a method for flow pattern identification relying on log responses and a drift-flux model were proposed for gas-water EB flow. This model, built upon experimental data of EB flow, reveals physical mechanisms of gas-water EB flow during measurement processing. The coefficients it contains are the specific values under experimental conditions and with the PLT string used in our experiments. These coefficients also reveal the interference with original downhole flow patterns by the PLT string. Due to the representativeness that our simulated flow experiments and PLT string possess, the model coefficients can be applied as empirical values of logging interpretation model parameters directly to real production logging data interpretation, when the measurement circumstances and PLT strings are similar. 展开更多
关键词 Horizontal wells elongated bubble flow flow patterns identification drift-flux model logging interpretation model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部