Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, mini...Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, minimization of the dynamic compliance subject to forced vibration, and minimization of the structural frequency response. A dynamic topology optimization method of bi-material plate structures is presented based on power flow analysis. Topology optimization problems formulated directly with the design objective of minimizing the power flow response are dealt with. In comparison to the displacement or velocity response, the power flow response takes not only the amplitude of force and velocity into account, but also the phase relationship of the two vector quantities. The complex expression of power flow response is derived based on time-harmonic external mechanical loading and Rayleigh damping. The mathematical formulation of topology optimization is established based on power flow response and bi-material solid isotropic material with penalization(SIMP) model. Computational optimization procedure is developed by using adjoint design sensitivity analysis and the method of moving asymptotes(MMA). Several numerical examples are presented for bi-material plate structures with different loading frequencies, which verify the feasibility and effectiveness of this method. Additionally, optimum results between topological design of minimum power flow response and minimum dynamic compliance are compared, showing that the present method has strong adaptability for structural dynamic topology optimization problems. The proposed research provides a more accurate and effective approach for dynamic topology optimization of vibrating structures.展开更多
By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerica...By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerical solving of internal flow fields of turbomachineries.Taking an unshrouded radial impeller with the working fluid of water vapour as the research object,the flow response to the fluctuation of rotational speed was calculated.By comparing the surface pressure profiles and velocity contours calculated by the code and commercial software respectively,the accuracy of flow solver was verified.The analysis of flow response data indicates that,as the working condition shifts closer towards the surge boundary,the response of flow parameters such as mass flow and aerodynamic torque will be more nonsynchronous with the fluctuation of rotational speed,and also the influence of density variation on mass flow variation will be smaller.Moreover,the transient variation region of working condition performance will deviate farther away from the steady performance curve as the working condition approaches the surge boundary.Compared to the working conditions with small mass flows,the distribution characteristics of pressure difference load on the blade surface vary little under large mass flow conditions.The reduction of fluctuation amplitude of rotational speed exerts no influence on abating the hysteresis of flow response.展开更多
Nonlinear dynamic study is undertaken of the response of atmospheric and oceanic flow fields to local thermal source forcing in the context of a generalized geophysical fluid dynamic barotropic quasi_geostrophic model...Nonlinear dynamic study is undertaken of the response of atmospheric and oceanic flow fields to local thermal source forcing in the context of a generalized geophysical fluid dynamic barotropic quasi_geostrophic model, discovering a good relation between thermal disturbance and flow field response to it, both having similar modes, and that the soliton_like responding field is a great deal larger in extent than the analogous_form forcing field, which implies that a 'narrow' thermal disturbance can excite a 'wide' response field, in some cases the particular structure of a thermal source may give rise to singular response of atmospheric and oceanic flow fields, thus displaying their abnormalities (for example the blocking situation in the atmosphere), the atmospheric and oceanic stream fields at mid_high latitudes respond to thermal forcing in a much more pronounced manner compared to those at low latitudes. The said research results that is in agreement with studies from mid_low latitude atmospheric experiments and observations and can be used to partially interpret the circulation singularity due to heat source anomaly on a local basis in the context of earch fluid flows.展开更多
High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate a...High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.展开更多
The debate about climate change is highly politicized.Not everyone is convinced that CO_(2)emissions are worth curbing despite seemingly irrefutable evidence in the IPCC’s latest report.[1]Some have vested interests ...The debate about climate change is highly politicized.Not everyone is convinced that CO_(2)emissions are worth curbing despite seemingly irrefutable evidence in the IPCC’s latest report.[1]Some have vested interests in exploiting fossil fuels while others think alternative,cheaper solutions can be found.Countries that have shifted from manufacturing to service-based economies will find it easier to decarbonize.Other countries with relatively low carbon emissions per capita but large populations believe it is unfair that they should have to bear heavy costs of decarbonization to solve a problem that wealthier countries have created.展开更多
The current environmental flow assessment of Chinese rivers is thought to have three shortcomings: The first is that environmental flow requirements of reservoirs in dammed rivers are usually not explicitly considered...The current environmental flow assessment of Chinese rivers is thought to have three shortcomings: The first is that environmental flow requirements of reservoirs in dammed rivers are usually not explicitly considered; the second is that enough attentions have not been paid to the inherent links between flow regime and ecological processes; the third is that most studies focus on the variable range of merely one hydrological element such as discharge needed by riverine ecosystems. Here, first proposed is a holistic method for environmental flow assessment, the flow-ecological response relationship method that is suitable for large rivers with relatively abundant ecological data. Based on the conceptual models and quantitative relationships between flow and ecological response, this method comprehensively considers the ecological conservation requirements of both reservoir and its downstream reach. Then, it is applied to assessing the environmental flows of the Three Gorges Reservoir and its downstream reach by the following steps: 1) Construction of conceptual models of flow-ecological response; 2) identification of ecological targets of environmental flows and their key periods; 3) development of the quantitative relationships between hydrological indicators and ecological indictors; 4) preliminary assessment of environmental flow according to the tradeoff between ecological targets and water demands of human. The environmental flow hydrographs obtained have explicit ecological conservation targets, time schedule of achieving each target, and characteristics of multiple hydrological elements such as flow, water level, frequency, timing, duration and rate of change. The case study has tested the reasonability and feasibility of this method, and the results of this study are expected to provide technical support and decision reference for improving the operation of the Three Gorges-Gezhouba cascade reservoirs.展开更多
Consumers increasingly have worn-out batteries as electrical and electronic equipment with new technical developments are introduced into the market and quickly replace older models. As a result, large amounts of end-...Consumers increasingly have worn-out batteries as electrical and electronic equipment with new technical developments are introduced into the market and quickly replace older models. As a result, large amounts of end-of-life (EOL) or waste batteries are generated. Such batteries may contain a variety of materials that includes valuable resources as well as toxic elements. Thus, the proper recycling and management of batteries is very important from the perspective of resource conservation and environmental effect. The collection and recycling of EOL batteries is relatively low in South Korea compared to other countries, although an extended producer responsibility (EPR) policy was adopted for battery recycling in 2003. In this study, the management and material flow of EOL batteries is presented to determine potential problems and quantitative flow, based on literature review, site visits to battery recycling facilities, and interviews with experts in the Korea Battery Recycling Association (KBRA), manufacturers, and regulators in government. The results show that approximately 558 tons of manganese-alkaline batteries, the largest fraction among recycling target items, was disposed in landfills or incinerators in 2015, while approximately 2,000 tons of batteries were recovered at a recycling facility by simple sorting and crushing processes. By raising environmental awareness, more diverse and effective collection systems could be established for consumers to easily dispose of EOL batteries in many places. Producers, retailers and distributors in South Korea should also play an important role in the collection of EOL batteries from consumers. Lithium-ion batteries from many electronic devices must be included in the EPR system for resource recovery.展开更多
In this paper, the hydrodynamic characteristics of water flow in Chaohu Lake are studied by using the finite volume coastal ocean model(FVCOM), which is verified by the observed data. The typical flow field and the ...In this paper, the hydrodynamic characteristics of water flow in Chaohu Lake are studied by using the finite volume coastal ocean model(FVCOM), which is verified by the observed data. The typical flow field and the 3-D flow structure are obtained for the lake. The flow fields under extreme conditions are analyzed to provide a prospective knowledge of the water exchange and the transport process.The influence of the wind on the flow is determined by the cross spectrum method. The results show that the wind-driven flow dominates most area of the lake. Under prevailing winds in summer and winter, the water flows towards the downwind side at the upper layer while towards the upwind side at the lower layer in most area except that around the Chaohu Sluice. The extreme wind speed is not favorable for the water exchange while the sluice's releasing water accelerates the process. The water velocity in the lake is closely related with the wind speed.展开更多
基金supported by China Armament Pre-research Foundation(Grant No. 51318010402)UK Engineering and Physical Science Research Council (EPSRC), and China Scholarship Council (Grant No.2010611054)
文摘Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, minimization of the dynamic compliance subject to forced vibration, and minimization of the structural frequency response. A dynamic topology optimization method of bi-material plate structures is presented based on power flow analysis. Topology optimization problems formulated directly with the design objective of minimizing the power flow response are dealt with. In comparison to the displacement or velocity response, the power flow response takes not only the amplitude of force and velocity into account, but also the phase relationship of the two vector quantities. The complex expression of power flow response is derived based on time-harmonic external mechanical loading and Rayleigh damping. The mathematical formulation of topology optimization is established based on power flow response and bi-material solid isotropic material with penalization(SIMP) model. Computational optimization procedure is developed by using adjoint design sensitivity analysis and the method of moving asymptotes(MMA). Several numerical examples are presented for bi-material plate structures with different loading frequencies, which verify the feasibility and effectiveness of this method. Additionally, optimum results between topological design of minimum power flow response and minimum dynamic compliance are compared, showing that the present method has strong adaptability for structural dynamic topology optimization problems. The proposed research provides a more accurate and effective approach for dynamic topology optimization of vibrating structures.
基金supported by the National Key Basic Research Program of China (No.2012CB026000 )the National Science Foundation for Young Scientists (No.2014011155)
文摘By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerical solving of internal flow fields of turbomachineries.Taking an unshrouded radial impeller with the working fluid of water vapour as the research object,the flow response to the fluctuation of rotational speed was calculated.By comparing the surface pressure profiles and velocity contours calculated by the code and commercial software respectively,the accuracy of flow solver was verified.The analysis of flow response data indicates that,as the working condition shifts closer towards the surge boundary,the response of flow parameters such as mass flow and aerodynamic torque will be more nonsynchronous with the fluctuation of rotational speed,and also the influence of density variation on mass flow variation will be smaller.Moreover,the transient variation region of working condition performance will deviate farther away from the steady performance curve as the working condition approaches the surge boundary.Compared to the working conditions with small mass flows,the distribution characteristics of pressure difference load on the blade surface vary little under large mass flow conditions.The reduction of fluctuation amplitude of rotational speed exerts no influence on abating the hysteresis of flow response.
文摘Nonlinear dynamic study is undertaken of the response of atmospheric and oceanic flow fields to local thermal source forcing in the context of a generalized geophysical fluid dynamic barotropic quasi_geostrophic model, discovering a good relation between thermal disturbance and flow field response to it, both having similar modes, and that the soliton_like responding field is a great deal larger in extent than the analogous_form forcing field, which implies that a 'narrow' thermal disturbance can excite a 'wide' response field, in some cases the particular structure of a thermal source may give rise to singular response of atmospheric and oceanic flow fields, thus displaying their abnormalities (for example the blocking situation in the atmosphere), the atmospheric and oceanic stream fields at mid_high latitudes respond to thermal forcing in a much more pronounced manner compared to those at low latitudes. The said research results that is in agreement with studies from mid_low latitude atmospheric experiments and observations and can be used to partially interpret the circulation singularity due to heat source anomaly on a local basis in the context of earch fluid flows.
文摘High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.
文摘The debate about climate change is highly politicized.Not everyone is convinced that CO_(2)emissions are worth curbing despite seemingly irrefutable evidence in the IPCC’s latest report.[1]Some have vested interests in exploiting fossil fuels while others think alternative,cheaper solutions can be found.Countries that have shifted from manufacturing to service-based economies will find it easier to decarbonize.Other countries with relatively low carbon emissions per capita but large populations believe it is unfair that they should have to bear heavy costs of decarbonization to solve a problem that wealthier countries have created.
基金supported by the Ministry of Science and Technology of China (Grant Nos. 2012BAC06B01, 2012BAC06B04)
文摘The current environmental flow assessment of Chinese rivers is thought to have three shortcomings: The first is that environmental flow requirements of reservoirs in dammed rivers are usually not explicitly considered; the second is that enough attentions have not been paid to the inherent links between flow regime and ecological processes; the third is that most studies focus on the variable range of merely one hydrological element such as discharge needed by riverine ecosystems. Here, first proposed is a holistic method for environmental flow assessment, the flow-ecological response relationship method that is suitable for large rivers with relatively abundant ecological data. Based on the conceptual models and quantitative relationships between flow and ecological response, this method comprehensively considers the ecological conservation requirements of both reservoir and its downstream reach. Then, it is applied to assessing the environmental flows of the Three Gorges Reservoir and its downstream reach by the following steps: 1) Construction of conceptual models of flow-ecological response; 2) identification of ecological targets of environmental flows and their key periods; 3) development of the quantitative relationships between hydrological indicators and ecological indictors; 4) preliminary assessment of environmental flow according to the tradeoff between ecological targets and water demands of human. The environmental flow hydrographs obtained have explicit ecological conservation targets, time schedule of achieving each target, and characteristics of multiple hydrological elements such as flow, water level, frequency, timing, duration and rate of change. The case study has tested the reasonability and feasibility of this method, and the results of this study are expected to provide technical support and decision reference for improving the operation of the Three Gorges-Gezhouba cascade reservoirs.
文摘Consumers increasingly have worn-out batteries as electrical and electronic equipment with new technical developments are introduced into the market and quickly replace older models. As a result, large amounts of end-of-life (EOL) or waste batteries are generated. Such batteries may contain a variety of materials that includes valuable resources as well as toxic elements. Thus, the proper recycling and management of batteries is very important from the perspective of resource conservation and environmental effect. The collection and recycling of EOL batteries is relatively low in South Korea compared to other countries, although an extended producer responsibility (EPR) policy was adopted for battery recycling in 2003. In this study, the management and material flow of EOL batteries is presented to determine potential problems and quantitative flow, based on literature review, site visits to battery recycling facilities, and interviews with experts in the Korea Battery Recycling Association (KBRA), manufacturers, and regulators in government. The results show that approximately 558 tons of manganese-alkaline batteries, the largest fraction among recycling target items, was disposed in landfills or incinerators in 2015, while approximately 2,000 tons of batteries were recovered at a recycling facility by simple sorting and crushing processes. By raising environmental awareness, more diverse and effective collection systems could be established for consumers to easily dispose of EOL batteries in many places. Producers, retailers and distributors in South Korea should also play an important role in the collection of EOL batteries from consumers. Lithium-ion batteries from many electronic devices must be included in the EPR system for resource recovery.
基金supported by the Special Foundation (Class D) of "Hundred Talents Program" of Chinese Academy of Sciences
文摘In this paper, the hydrodynamic characteristics of water flow in Chaohu Lake are studied by using the finite volume coastal ocean model(FVCOM), which is verified by the observed data. The typical flow field and the 3-D flow structure are obtained for the lake. The flow fields under extreme conditions are analyzed to provide a prospective knowledge of the water exchange and the transport process.The influence of the wind on the flow is determined by the cross spectrum method. The results show that the wind-driven flow dominates most area of the lake. Under prevailing winds in summer and winter, the water flows towards the downwind side at the upper layer while towards the upwind side at the lower layer in most area except that around the Chaohu Sluice. The extreme wind speed is not favorable for the water exchange while the sluice's releasing water accelerates the process. The water velocity in the lake is closely related with the wind speed.