To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizi...To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizing parameter settings is proposed. The optimized parameters include the best measurement points of the Region of Interest (ROI) and the levels of pyramid filters. Additionally, to address the issue of updating reference frames in practical applications due to the difficulty in estimating the maximum effective measurement value, a mechanism for dynamically updating reference frames is introduced. Experimental results demonstrate that compared to representative image gradient-based displacement measurement methods, the proposed method exhibits higher measurement accuracy in engineering applications. This provides reliable data support for structural damage identification research based on vibration signals and is expected to broaden the engineering application prospects for structural health monitoring.展开更多
Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate ...Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.展开更多
In vitro experimental set-up is an important tool for investigating abdominal aortic aneurysm (AAA). Accurate reproduction of the physiological pulsatile flow waveform in the abdominal aorta at various anatomic locati...In vitro experimental set-up is an important tool for investigating abdominal aortic aneurysm (AAA). Accurate reproduction of the physiological pulsatile flow waveform in the abdominal aorta at various anatomic locations is an important component of these experimental methods. The objective of this study is to establish an experimental set-up to generate a physiological pulsatile flow for in vitro simulations of the abdominal aorta. The physiological flow was established by a computer-controlled peristaltic pump and the flow field in a circular straight pipe is measured under pulsatile flow conditions by a 2-dimensional particle image velocimetry system (2D-PIV). Experimental results show that the in vitro experimental set-up provides a flow with a period of 2 s, a reasonable cross-sectional velocity distribution and an approximate inlet velocity profile that is close to the human abdominal aorta.展开更多
Parasitic flows may occur in the numerical simulation of incompressible multiphase flow due to errors in the calculation of surface tension terms, specifically for the curvature and unit normal vector. An improved met...Parasitic flows may occur in the numerical simulation of incompressible multiphase flow due to errors in the calculation of surface tension terms, specifically for the curvature and unit normal vector. An improved method for calculating the surface tension based on the level set approach is proposed, in which the contribution of not only the center node but also the rest area of a control volume to the calculation of surface tension is considered in a balanced manner. The weighted integration method (WIM) is more consistent with the concept of a banded in- terface in the level set method. It is applied to the temporal evolution of a two-dimensional neutrally buoyant liquid drop and a buoyancy driven deformable bubble in an immiscible fluid for the validation of WIM. The results show that the parasitic flows are evidently suppressed by the weighted integration method. The weight factors for WIM in 3-D cases are also suggested.展开更多
Air entrapped in liquid metal during the mold filling process seriously affects the casting quality, thus it is important to track its behavior in the mold cavity. A liquid-gas two-phase flow model is developed to des...Air entrapped in liquid metal during the mold filling process seriously affects the casting quality, thus it is important to track its behavior in the mold cavity. A liquid-gas two-phase flow model is developed to describe the mold filling process and predict the air entrapment defect. The model is based on the combination of SOLA and Level Set Method. The pressure and velocity fields are calculated by SOLA,and the interface movement is simulated by Level Set method as the most common interface tracking method in recent years.In order to validate the feasibility of the model,the liquid-gas two-phase simulation results were tested by the broken dam problem and the S-shaped experiment. Comparison between the experiments and simulation results show that Level Set method might be a very promising tool in two-phase flow simulation during the mold filling process.展开更多
文摘To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizing parameter settings is proposed. The optimized parameters include the best measurement points of the Region of Interest (ROI) and the levels of pyramid filters. Additionally, to address the issue of updating reference frames in practical applications due to the difficulty in estimating the maximum effective measurement value, a mechanism for dynamically updating reference frames is introduced. Experimental results demonstrate that compared to representative image gradient-based displacement measurement methods, the proposed method exhibits higher measurement accuracy in engineering applications. This provides reliable data support for structural damage identification research based on vibration signals and is expected to broaden the engineering application prospects for structural health monitoring.
文摘Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.
文摘In vitro experimental set-up is an important tool for investigating abdominal aortic aneurysm (AAA). Accurate reproduction of the physiological pulsatile flow waveform in the abdominal aorta at various anatomic locations is an important component of these experimental methods. The objective of this study is to establish an experimental set-up to generate a physiological pulsatile flow for in vitro simulations of the abdominal aorta. The physiological flow was established by a computer-controlled peristaltic pump and the flow field in a circular straight pipe is measured under pulsatile flow conditions by a 2-dimensional particle image velocimetry system (2D-PIV). Experimental results show that the in vitro experimental set-up provides a flow with a period of 2 s, a reasonable cross-sectional velocity distribution and an approximate inlet velocity profile that is close to the human abdominal aorta.
基金the National Natural Science Foundation of China (No.20490206) the Special Funds for Major State BasicResearch Program of China (973 Program, 2004CB217604).
文摘Parasitic flows may occur in the numerical simulation of incompressible multiphase flow due to errors in the calculation of surface tension terms, specifically for the curvature and unit normal vector. An improved method for calculating the surface tension based on the level set approach is proposed, in which the contribution of not only the center node but also the rest area of a control volume to the calculation of surface tension is considered in a balanced manner. The weighted integration method (WIM) is more consistent with the concept of a banded in- terface in the level set method. It is applied to the temporal evolution of a two-dimensional neutrally buoyant liquid drop and a buoyancy driven deformable bubble in an immiscible fluid for the validation of WIM. The results show that the parasitic flows are evidently suppressed by the weighted integration method. The weight factors for WIM in 3-D cases are also suggested.
基金National High Technology Research and Development Program of China (863program) (2006AA04Z140)National Natural Science Foundation of China (NSFC) (50605024)
文摘Air entrapped in liquid metal during the mold filling process seriously affects the casting quality, thus it is important to track its behavior in the mold cavity. A liquid-gas two-phase flow model is developed to describe the mold filling process and predict the air entrapment defect. The model is based on the combination of SOLA and Level Set Method. The pressure and velocity fields are calculated by SOLA,and the interface movement is simulated by Level Set method as the most common interface tracking method in recent years.In order to validate the feasibility of the model,the liquid-gas two-phase simulation results were tested by the broken dam problem and the S-shaped experiment. Comparison between the experiments and simulation results show that Level Set method might be a very promising tool in two-phase flow simulation during the mold filling process.