With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)wi...With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)will coexist.In order to examine the effect of CAV on the overall stability and energy consumption of such a heterogeneous traffic system,we first take into account the interrelated perception of distance and speed by CAV to establish a macroscopic dynamic model through utilizing the full velocity difference(FVD)model.Subsequently,adopting the linear stability theory,we propose the linear stability condition for the model through using the small perturbation method,and the validity of the heterogeneous model is verified by comparing with the FVD model.Through nonlinear theoretical analysis,we further derive the KdV-Burgers equation,which captures the propagation characteristics of traffic density waves.Finally,by numerical simulation experiments through utilizing a macroscopic model of heterogeneous traffic flow,the effect of CAV permeability on the stability of density wave in heterogeneous traffic flow and the energy consumption of the traffic system is investigated.Subsequent analysis reveals emergent traffic phenomena.The experimental findings demonstrate that as CAV permeability increases,the ability to dampen the propagation of fluctuations in heterogeneous traffic flow gradually intensifies when giving system perturbation,leading to enhanced stability of the traffic system.Furthermore,higher initial traffic density renders the traffic system more susceptible to congestion,resulting in local clustering effect and stop-and-go traffic phenomenon.Remarkably,the total energy consumption of the heterogeneous traffic system exhibits a gradual decline with CAV permeability increasing.Further evidence has demonstrated the positive influence of CAV on heterogeneous traffic flow.This research contributes to providing theoretical guidance for future CAV applications,aiming to enhance urban road traffic efficiency and alleviate congestion.展开更多
Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flo...Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flow systems.Moreover,it remains challenging to identify characteristics of water table space variation through limited groundwater observations at the regional scale.Based on two ideal two-dimensional cross-section analytical models,this study presents a simplified approach to preliminarily assess the nonlinear interactions between water table variation and three driving factors:Topography,geol-ogy and climate.Two criteria,C1 and C2,are utilized to address issues at different scales ranging from basin to local:(i)the influence of various factors on water table configuration;and(ii)the influence of water table on groundwater flow pattern.Then,the Ordos Plateau is taken as an example to explore the role of the water table in nested groundwater systems using the provided approach and criterion.The applica-tion of this approach in the Ordos Plateau demonstrates its appropriateness as a practical method for prelim-inarily determining the characteristics of water table configuration and its impact on flow systems.The study explores the mechanism influencing spatial variation in the water table and improves understanding of the interaction between topography,geology,and climate on groundwater flow patterns.展开更多
The quantitative estimation of amikacin (AMK) in AMK sulfate injection samples is reported using FTIR-derivative spectrometric method in a continuous flow system. Fourier transform of mid-IR spectra were recorded wi...The quantitative estimation of amikacin (AMK) in AMK sulfate injection samples is reported using FTIR-derivative spectrometric method in a continuous flow system. Fourier transform of mid-IR spectra were recorded without any sample pretreatment. A good linear calibration (r40.999, %RSDo 2.0) in the range of 7.7-77.0 mg/mL was found. The results showed a good correlation with the manufacturer's and overall they all fell within acceptable limits of most pharmacopoeial monographs on AMK sulfate.展开更多
In this short note,we are concerned with the global existence and stability of solutions to the river flow system.We introduce a new technique to set up a relation between the Riemann invariants and the finite mass to...In this short note,we are concerned with the global existence and stability of solutions to the river flow system.We introduce a new technique to set up a relation between the Riemann invariants and the finite mass to obtain a time-independent,bounded solution for any adiabatic exponent.The global existence of solutions was known long ago[Klingenberg and Lu in Commun.Math.Phys.187:327-340,1997].However,since the uncertainty of the function b(x),which corresponds physically to the slope of the topography,the L∞estimates growed larger with respect to the time variable.As a result,it does not guarantee the stability of solutions.By employing a suitable mathematical transformation to control the slope of the topography by the friction and the finite mass,we prove the uniformly bounded estimate with respect to the time variable.This means that our solutions are stable.展开更多
The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disast...The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disasters such as water inrush or gas outburst and the protection of the groundwater resource. It is of great theoretical and engineering importance in respect of promo- tion of security in mine production and sustainable development of the coal industry. According to the non-Darcy property of seepage flow in broken rock dynamic equations of non-Darcy and non-steady flows in broken rock are established. By dimensionless transformation, the solution diagram of steady-states satisfying the given boundary conditions is obtained. By numerical analysis of low relaxation iteration, the dynamic responses corresponding to the different flow parameters have been obtained. The stability analysis of the steady-states indicate that a saddle-node bifurcaton exists in the seepage flow system of broken rock. Consequently, using catastrophe theory, the fold catastrophe model of seepage flow instability has been obtained. As a result, the bifurcation curves of the seepage flow systems with different control parameters are presented and the standard potential function is also given with respect to the generalized state variable for the fold catastrophe of a dynamic system of seepage flow in broken rock.展开更多
Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed ...Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.展开更多
The appearance of turbidity due to large numbers of critical size hydrate nuclei may significantly affect the outgoing light intensity and the flow resistance in the pipe loop. The induction period of hydrate formatio...The appearance of turbidity due to large numbers of critical size hydrate nuclei may significantly affect the outgoing light intensity and the flow resistance in the pipe loop. The induction period of hydrate formation was determined by analyzing the experimental data——either based on the shading ratio data of laser detector or based on the pressure drop data of the flow system. The induction period of CC12F2 (R12) in pure water and that of CH4 in (tetrahydrofuran + water) systems were then measured with the above two methods. Experimental data show that the induction period depends on the driving force exponentially. Flow rate also has a significant influence on the hydrate nucleation. A new induction period model taking the driving force and liquid flow rate into account was proposed. And it is successfully applied to the calculation of the induction period, which is in good agreement with the experimental data obtained in this study.展开更多
The developmental characteristics of groundwater flow system are not only controlled by formation lithology and groundwater recharge conditions,but also influenced by the physical properties of fluids.Numerical simula...The developmental characteristics of groundwater flow system are not only controlled by formation lithology and groundwater recharge conditions,but also influenced by the physical properties of fluids.Numerical simulation is an effective way to study groundwater flow system.In this paper,the ideal model is generalized according to the fundamental characteristics of groundwater system in inland basins of Western China.The simulation method of variable density flow on the development of groundwater system in inland basins is established by using EOS9 module in TOUGHREACT numerical simulation software.In accordance with the groundwater streamline,the groundwater flow system is divided into three levels,which are regional groundwater flow system,intermediate groundwater flow system and local groundwater flow system.Based on the calculation of the renewal rate of groundwater,the analysis shows that the increase of fluid density in the central part of the basin will restrain the development of regional groundwater flow system,resulting in a decrease of the circulation rate from 32.28% to 17.62% and a certain enhancement to the local groundwater flow system,which increased from 37.29% to 51.94%.展开更多
Large-scale electrical energy storage with high energy density and round-trip efficiency is important to the resilience of power grids and the effective use of intermittent renewable energy such as solar and wind.Lith...Large-scale electrical energy storage with high energy density and round-trip efficiency is important to the resilience of power grids and the effective use of intermittent renewable energy such as solar and wind.Lithiumoxygen battery,due to its high energy density,is believed to be one of the most promising energy storage systems for the future.However,large overpotentials,poor cycling stability,and degradation of electrolytes and cathodes have been hindering the development of lithium-oxygen batteries.Numerous heterogeneous oxygen electrocatalysts have been investigated to lower the overpotentials and enhance the cycling stability of lithium-oxygen batteries.Unfortunately,the prevailing issues of electrode passivation and clogging remain.Over the past few years,redox mediators were explored as homogenous catalysts to address the issues,while only limited success has been achieved for these soluble catalysts.In conjunction with a flowing electrolyte system,a new redox flow lithium-oxygen battery(RFLOB)has been devised to tackle the aforementioned issues.The working mechanism and schematic processes will be elaborated in this review.In addition,the performance gap of RFLOB with respect to practical requirements will be analysed.With the above,we anticipate RFLOB would be a credible solution for the implementation of lithium-oxygen battery chemistry for the next generation energy storage.展开更多
Elucidating the synergistic effect of wax and hydrates, involving formation, aggregation and deposition,is imperative to the operation and transportation safety for offshore petroleum fields. To understand the charact...Elucidating the synergistic effect of wax and hydrates, involving formation, aggregation and deposition,is imperative to the operation and transportation safety for offshore petroleum fields. To understand the characteristics and mechanism of synergistic deposition of wax and hydrates, flow and deposition experiments of systems with different wax contents(0-2.89 wt%), initial flow rates, pressures and temperatures were conducted in a high pressure visual flow loop. According to the flow rate and pressure drop data as well as the visual window observation, four different types of plugging scenarios of waxhydrate coexisting systems with different flow properties and wall deposition state were summarized,including rapid plugging, transition plugging, gradual plugging type I and gradual plugging type II.Compared with the wax-free system after hydrate formation, even with the addition of anti-agglomerant(AA) with the same concentration, wax-hydrate coexisting systems could not reach stable hydrate slurry flow state, indicating that the existence of wax deteriorated the performance of AA. Aside from the influence of wax crystals on hydrate agglomeration, it was found that wax deposition layer would alter the adhesion and bedding of hydrates, resulting in the variation of flow properties and wall deposition state.For low wax content systems(0.75 wt%) where rapid plugging occurred, the synergistic effect between wax and hydrates promoted the formation of wax-hydrate coupling aggregates, resulting in severe local deposition when the coupling aggregates attained critical deposition size and consequently decreasing flow rate, forming a vicious circle of decreasing transportability. Since bedding of coupling aggregates was hindered by the uniformly coated wax deposition layer on pipe wall, gradual plugging rather than rapid plugging occurred in medium wax content systems(1-1.25 wt%), predominately caused by the gradual increment in viscosity of waxy hydrate slurry. For relatively high wax content systems(2.89 wt%), hydrate formation and plugging did not occur, due to the insulation effect of wax deposition layer. A physical model for the synergistic deposition of wax and hydrates was also presented, which was meaningful to the development of a mathematical model for the prediction of blockage formation and risk analysis.展开更多
The integration of the photocatalytic effect into solar steam is highly desirable for addressing freshwater shortages and water pollution.Here,a ternary film structure for the adsorption and photothermal and photocata...The integration of the photocatalytic effect into solar steam is highly desirable for addressing freshwater shortages and water pollution.Here,a ternary film structure for the adsorption and photothermal and photocatalytic treatment of wastewater was designed by combining the technique of self-assembled carbon nano paper with a nitrogen composite titanium dioxide(N-TiO_(2))deposited on the surface of carbon nanotubes(CNT)using polyvinylidene fluoride(PVDF)as a substrate.The photogeneration of reactive oxygen species can be promoted by rapid oxygen diffusion at the three-phase interface,whereas the interfacial photothermal effect promotes subsequent free radical reactions for the degradation of rhodamine B(93%).The freshwater evaporation rate is 1.35 kg·m^(-2)·h^(-1)and the solar-to-water evaporation efficiency is 94%.Importantly,the N-TiO_(2)/CNT/PVDF(N-TCP)film not only effectively resists mechanical damage from the environment and maintains structural integrity,but can also be made into a large film for outdoor experiments in a large solar energy conversion device to collect fresh water from polluted water and degrade organic dyes in source water simultaneously,opening the way for applications in energy conversion and storage.展开更多
An electrical resistivity and electromagnetic emission survey was carried out involving the use of vertical electrical soundings (VES) and natural pulse electromagnetic field of the earth (NPEMFE). The use of this new...An electrical resistivity and electromagnetic emission survey was carried out involving the use of vertical electrical soundings (VES) and natural pulse electromagnetic field of the earth (NPEMFE). The use of this new methodology managed to detect the fracture flow system rupture zones in the underground, also answered the questions about the deferent subsurface water bodies. The present study focuses on Marsaba-Feshcha sub-basin in the northeast of the Dead Sea. Due to the scarcity of boreholes in the study area, several geophysical methods were implanted. The combination of these two methods (VES and NPEMFE) with the field observations and East-West transversal faults with the coordination (624437/242888) was determined, cutting through the anticlines with their mainly impervious cores with fracture length of >400 m. These transversal faults saddle inside Nabi Musa syncline (Boqea syncline), leading to a hydraulic connection between the Lower and the Upper Aquifer. Due to the identified transversal fault, the water of the Upper and Lower Aquifer mixed and emerged as springs at Ein Feshcha group.展开更多
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ...Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.展开更多
Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid na...Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect.展开更多
In fractured geothermal reservoirs,the fracture networks and internal fluid flow behaviors can significantly impact the thermal performance.In this study,we proposed a non-Darcy rough discrete fracture network(NR-DFN)...In fractured geothermal reservoirs,the fracture networks and internal fluid flow behaviors can significantly impact the thermal performance.In this study,we proposed a non-Darcy rough discrete fracture network(NR-DFN)model that can simultaneously consider the fracture evolution and non-Darcy flow dynamics in studying the thermo-hydro-mechanical(THM)coupling processes for heat extraction in geothermal reservoir.We further employed the model on the Habanero enhanced geothermal systems(EGS)project located in Australia.First,our findings illustrate a clear spatial-temporal variation in the thermal stress and pressure perturbations,as well as uneven spatial distribution of shear failure in 3D fracture networks.Activated shear failure is mainly concentrated in the first fracture cluster.Secondly,channeling flow have also been observed in DFNs during heat extraction and are further intensified by the expansion of fractures driven by thermal stresses.Moreover,the combined effect of non-Darcy flow and fracture evolution triggers a rapid decline in the resulting heat rate and temperature.The NR-DFN model framework and the Habanero EGS's results illustrate the importance of both fracture evolution and non-Darcy flow on the efficiency of EGS production and have the potential to promote the development of more sustainable and efficient EGS operations for stakeholders.展开更多
Efficient and secure refueling within the vehicle refueling systems exhibits a close correlation with the issues concerning fuel backflow and gasoline evaporation.This paper investigates the transient flow behavior in...Efficient and secure refueling within the vehicle refueling systems exhibits a close correlation with the issues concerning fuel backflow and gasoline evaporation.This paper investigates the transient flow behavior in fuel hose refilling and simplified tank fuel replenishment using the volume of fluid method.The numerical simulation is validated with the simplified hose refilling experiment and the evaporation simulation of Stefan tube.The effects of injection flow rate and injection directions have been discussed in the fuel hose refilling part.For both the experiment and simulation,the pressure at the end of the refueling pipe in the lower located nozzle case is 30%higher than that in the upper located nozzle case at a high flow rate,and the backflow phenomenon occurs at the lower filling mode.The fluid will directly flush into the first pipe elbow,changing the flow pattern from bubble flow to slug flow,which results in low-frequency and high-amplitude flowpressure fluctuations.Ahexane refueling system,consisting of a refueling pipe,fuel tank and a vapor return line,is analyzed,in which hexane evaporation is considered.At the early refueling period,a higher refueling rate will lead to more obvious splashing,which leads to a higher average mass of hexane vapor and pressure in the tank.Two optimized fuel tank designs are examined.The lower fuel tank filling port exhibits significantly lower vapor hexane in the fuel tank compared to the other design,resulting in a reduction of 200 Pa in the peak pressure in the tank,which contributes to a substantial reduction of gasoline loss during tank filling.展开更多
Heat engines based on reciprocating machines remain in demand as energy converters in a variety of industries around the world.The aim of the study was to evaluate the gas-dynamic,consumable and heat exchange characte...Heat engines based on reciprocating machines remain in demand as energy converters in a variety of industries around the world.The aim of the study was to evaluate the gas-dynamic,consumable and heat exchange characteristics of non-stationary air flows in a supply system with transverse profiling of valve channels based on experimental studies.Valve channels with cross sections in the form of a circle,square and triangle were used to control the consumable and heat exchange characteristics of the flows in the supply system of the reciprocatingengine model.The article presents data on changes in local velocity,volumetric airflow and instantaneous heat transfer coefficient of non-stationary airflow in supply systems with different valve channel designs.A spectral analysis of the pulsations of the local heat transfer coefficient was also performed.The Nusselt number was calculated for the studied supply systems.The figured valve channels lead to an increase in the volumetric airflow through the supply systemupto32%comparedwiththe basic configuration.The useof a square valve channel leads to suppression of heat transfer(drop is about 15%)compared to the basic supply system,and the use of a triangular valve channel causes an intensification of heat transfer(growth is about 17.5%).The obtained data can be useful for refining mathematical models,adjusting machine learning algorithms,and improving design methods for supply systems of reciprocating machines to improve their technical,economic,and environmental characteristics.展开更多
基金Project supported by the Fundamental Research Funds for Central Universities,China(Grant No.2022YJS065)the National Natural Science Foundation of China(Grant Nos.72288101 and 72371019).
文摘With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)will coexist.In order to examine the effect of CAV on the overall stability and energy consumption of such a heterogeneous traffic system,we first take into account the interrelated perception of distance and speed by CAV to establish a macroscopic dynamic model through utilizing the full velocity difference(FVD)model.Subsequently,adopting the linear stability theory,we propose the linear stability condition for the model through using the small perturbation method,and the validity of the heterogeneous model is verified by comparing with the FVD model.Through nonlinear theoretical analysis,we further derive the KdV-Burgers equation,which captures the propagation characteristics of traffic density waves.Finally,by numerical simulation experiments through utilizing a macroscopic model of heterogeneous traffic flow,the effect of CAV permeability on the stability of density wave in heterogeneous traffic flow and the energy consumption of the traffic system is investigated.Subsequent analysis reveals emergent traffic phenomena.The experimental findings demonstrate that as CAV permeability increases,the ability to dampen the propagation of fluctuations in heterogeneous traffic flow gradually intensifies when giving system perturbation,leading to enhanced stability of the traffic system.Furthermore,higher initial traffic density renders the traffic system more susceptible to congestion,resulting in local clustering effect and stop-and-go traffic phenomenon.Remarkably,the total energy consumption of the heterogeneous traffic system exhibits a gradual decline with CAV permeability increasing.Further evidence has demonstrated the positive influence of CAV on heterogeneous traffic flow.This research contributes to providing theoretical guidance for future CAV applications,aiming to enhance urban road traffic efficiency and alleviate congestion.
基金funded by the Inner Mongolia Autonomous Region Science and Technology Program(2021GG0198)Shaanxi Science,Technology Department(No.2021ZDLSF05-01,2022SF-327)China Geological Survey(DD20190351,DD20221751).
文摘Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flow systems.Moreover,it remains challenging to identify characteristics of water table space variation through limited groundwater observations at the regional scale.Based on two ideal two-dimensional cross-section analytical models,this study presents a simplified approach to preliminarily assess the nonlinear interactions between water table variation and three driving factors:Topography,geol-ogy and climate.Two criteria,C1 and C2,are utilized to address issues at different scales ranging from basin to local:(i)the influence of various factors on water table configuration;and(ii)the influence of water table on groundwater flow pattern.Then,the Ordos Plateau is taken as an example to explore the role of the water table in nested groundwater systems using the provided approach and criterion.The applica-tion of this approach in the Ordos Plateau demonstrates its appropriateness as a practical method for prelim-inarily determining the characteristics of water table configuration and its impact on flow systems.The study explores the mechanism influencing spatial variation in the water table and improves understanding of the interaction between topography,geology,and climate on groundwater flow patterns.
基金the CDCHTA of the University of Los Andes for providing financial support through several approved projectsthe National Fund for Science, Technology and Innovation (FONACIT) of Venezuelan Ministry of Science and Technology for providing financial support, SPE 112–370 and Project G-2005000641
文摘The quantitative estimation of amikacin (AMK) in AMK sulfate injection samples is reported using FTIR-derivative spectrometric method in a continuous flow system. Fourier transform of mid-IR spectra were recorded without any sample pretreatment. A good linear calibration (r40.999, %RSDo 2.0) in the range of 7.7-77.0 mg/mL was found. The results showed a good correlation with the manufacturer's and overall they all fell within acceptable limits of most pharmacopoeial monographs on AMK sulfate.
基金supported by the Zhejiang Natural Science Foundation of China(Grant No.LY17A010019)the second author is supported by the Zhejiang Natural Science Foundation of China(Grant No.LY20A010023)+1 种基金the National Natural Science Foundation of China(Grant No.12071106)the third author is supported by the Grant-in-Aid for Scientific Research(C)17K05315,Japan.
文摘In this short note,we are concerned with the global existence and stability of solutions to the river flow system.We introduce a new technique to set up a relation between the Riemann invariants and the finite mass to obtain a time-independent,bounded solution for any adiabatic exponent.The global existence of solutions was known long ago[Klingenberg and Lu in Commun.Math.Phys.187:327-340,1997].However,since the uncertainty of the function b(x),which corresponds physically to the slope of the topography,the L∞estimates growed larger with respect to the time variable.As a result,it does not guarantee the stability of solutions.By employing a suitable mathematical transformation to control the slope of the topography by the friction and the finite mass,we prove the uniformly bounded estimate with respect to the time variable.This means that our solutions are stable.
基金Projects 50490273 and 50674087 supported by the National Natural Science Foundation of ChinaBK2007029 by the Natural Science Foundation of Jiangsu Province
文摘The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disasters such as water inrush or gas outburst and the protection of the groundwater resource. It is of great theoretical and engineering importance in respect of promo- tion of security in mine production and sustainable development of the coal industry. According to the non-Darcy property of seepage flow in broken rock dynamic equations of non-Darcy and non-steady flows in broken rock are established. By dimensionless transformation, the solution diagram of steady-states satisfying the given boundary conditions is obtained. By numerical analysis of low relaxation iteration, the dynamic responses corresponding to the different flow parameters have been obtained. The stability analysis of the steady-states indicate that a saddle-node bifurcaton exists in the seepage flow system of broken rock. Consequently, using catastrophe theory, the fold catastrophe model of seepage flow instability has been obtained. As a result, the bifurcation curves of the seepage flow systems with different control parameters are presented and the standard potential function is also given with respect to the generalized state variable for the fold catastrophe of a dynamic system of seepage flow in broken rock.
基金Supported by the National Natural Science Foundation of China(61203021)the Key Science and Technology Program of Liaoning Province(2011216011)+1 种基金the Natural Science Foundation of Liaoning Province(2013020024)the Program for Liaoning Excellent Talents in Universities(LJQ2015061)
文摘Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.
基金the National 973 Program of China (No. 2001CB209107) the National 863 Project of China (No. 2002AA615120) Huo Yingdong Education Foundation.
文摘The appearance of turbidity due to large numbers of critical size hydrate nuclei may significantly affect the outgoing light intensity and the flow resistance in the pipe loop. The induction period of hydrate formation was determined by analyzing the experimental data——either based on the shading ratio data of laser detector or based on the pressure drop data of the flow system. The induction period of CC12F2 (R12) in pure water and that of CH4 in (tetrahydrofuran + water) systems were then measured with the above two methods. Experimental data show that the induction period depends on the driving force exponentially. Flow rate also has a significant influence on the hydrate nucleation. A new induction period model taking the driving force and liquid flow rate into account was proposed. And it is successfully applied to the calculation of the induction period, which is in good agreement with the experimental data obtained in this study.
基金jointly funded by the National Natural Science Foundation of China (41702282, 41602268)China Geological Survey Project (DD20160311, DD20160238)the Basic Research Service Fee of the Chinese Academy of Geological Sciences (YYWF201626)
文摘The developmental characteristics of groundwater flow system are not only controlled by formation lithology and groundwater recharge conditions,but also influenced by the physical properties of fluids.Numerical simulation is an effective way to study groundwater flow system.In this paper,the ideal model is generalized according to the fundamental characteristics of groundwater system in inland basins of Western China.The simulation method of variable density flow on the development of groundwater system in inland basins is established by using EOS9 module in TOUGHREACT numerical simulation software.In accordance with the groundwater streamline,the groundwater flow system is divided into three levels,which are regional groundwater flow system,intermediate groundwater flow system and local groundwater flow system.Based on the calculation of the renewal rate of groundwater,the analysis shows that the increase of fluid density in the central part of the basin will restrain the development of regional groundwater flow system,resulting in a decrease of the circulation rate from 32.28% to 17.62% and a certain enhancement to the local groundwater flow system,which increased from 37.29% to 51.94%.
基金supported by the National Research Foundation, Prime Minister’s Office, Singapore, under its Competitive Research Program (CRP Awards No.NRF-CRP10-2012-06)
文摘Large-scale electrical energy storage with high energy density and round-trip efficiency is important to the resilience of power grids and the effective use of intermittent renewable energy such as solar and wind.Lithiumoxygen battery,due to its high energy density,is believed to be one of the most promising energy storage systems for the future.However,large overpotentials,poor cycling stability,and degradation of electrolytes and cathodes have been hindering the development of lithium-oxygen batteries.Numerous heterogeneous oxygen electrocatalysts have been investigated to lower the overpotentials and enhance the cycling stability of lithium-oxygen batteries.Unfortunately,the prevailing issues of electrode passivation and clogging remain.Over the past few years,redox mediators were explored as homogenous catalysts to address the issues,while only limited success has been achieved for these soluble catalysts.In conjunction with a flowing electrolyte system,a new redox flow lithium-oxygen battery(RFLOB)has been devised to tackle the aforementioned issues.The working mechanism and schematic processes will be elaborated in this review.In addition,the performance gap of RFLOB with respect to practical requirements will be analysed.With the above,we anticipate RFLOB would be a credible solution for the implementation of lithium-oxygen battery chemistry for the next generation energy storage.
基金supported by the National Natural Science Foundation of China (Grant No. 52004039&51804046&51974037)Open Project of Jiangsu Key Laboratory of Oil-gas Storage and Transportation Technology (Grant No. CDYQCY202102)China Postdoctoral Science Foundation (Grant No. 2021M693908)。
文摘Elucidating the synergistic effect of wax and hydrates, involving formation, aggregation and deposition,is imperative to the operation and transportation safety for offshore petroleum fields. To understand the characteristics and mechanism of synergistic deposition of wax and hydrates, flow and deposition experiments of systems with different wax contents(0-2.89 wt%), initial flow rates, pressures and temperatures were conducted in a high pressure visual flow loop. According to the flow rate and pressure drop data as well as the visual window observation, four different types of plugging scenarios of waxhydrate coexisting systems with different flow properties and wall deposition state were summarized,including rapid plugging, transition plugging, gradual plugging type I and gradual plugging type II.Compared with the wax-free system after hydrate formation, even with the addition of anti-agglomerant(AA) with the same concentration, wax-hydrate coexisting systems could not reach stable hydrate slurry flow state, indicating that the existence of wax deteriorated the performance of AA. Aside from the influence of wax crystals on hydrate agglomeration, it was found that wax deposition layer would alter the adhesion and bedding of hydrates, resulting in the variation of flow properties and wall deposition state.For low wax content systems(0.75 wt%) where rapid plugging occurred, the synergistic effect between wax and hydrates promoted the formation of wax-hydrate coupling aggregates, resulting in severe local deposition when the coupling aggregates attained critical deposition size and consequently decreasing flow rate, forming a vicious circle of decreasing transportability. Since bedding of coupling aggregates was hindered by the uniformly coated wax deposition layer on pipe wall, gradual plugging rather than rapid plugging occurred in medium wax content systems(1-1.25 wt%), predominately caused by the gradual increment in viscosity of waxy hydrate slurry. For relatively high wax content systems(2.89 wt%), hydrate formation and plugging did not occur, due to the insulation effect of wax deposition layer. A physical model for the synergistic deposition of wax and hydrates was also presented, which was meaningful to the development of a mathematical model for the prediction of blockage formation and risk analysis.
基金Scientific Research Fund of Zhejiang Provincial Education Department(Y202250501)SRT Research Project of Jiaxing Nanhu University。
文摘The integration of the photocatalytic effect into solar steam is highly desirable for addressing freshwater shortages and water pollution.Here,a ternary film structure for the adsorption and photothermal and photocatalytic treatment of wastewater was designed by combining the technique of self-assembled carbon nano paper with a nitrogen composite titanium dioxide(N-TiO_(2))deposited on the surface of carbon nanotubes(CNT)using polyvinylidene fluoride(PVDF)as a substrate.The photogeneration of reactive oxygen species can be promoted by rapid oxygen diffusion at the three-phase interface,whereas the interfacial photothermal effect promotes subsequent free radical reactions for the degradation of rhodamine B(93%).The freshwater evaporation rate is 1.35 kg·m^(-2)·h^(-1)and the solar-to-water evaporation efficiency is 94%.Importantly,the N-TiO_(2)/CNT/PVDF(N-TCP)film not only effectively resists mechanical damage from the environment and maintains structural integrity,but can also be made into a large film for outdoor experiments in a large solar energy conversion device to collect fresh water from polluted water and degrade organic dyes in source water simultaneously,opening the way for applications in energy conversion and storage.
文摘An electrical resistivity and electromagnetic emission survey was carried out involving the use of vertical electrical soundings (VES) and natural pulse electromagnetic field of the earth (NPEMFE). The use of this new methodology managed to detect the fracture flow system rupture zones in the underground, also answered the questions about the deferent subsurface water bodies. The present study focuses on Marsaba-Feshcha sub-basin in the northeast of the Dead Sea. Due to the scarcity of boreholes in the study area, several geophysical methods were implanted. The combination of these two methods (VES and NPEMFE) with the field observations and East-West transversal faults with the coordination (624437/242888) was determined, cutting through the anticlines with their mainly impervious cores with fracture length of >400 m. These transversal faults saddle inside Nabi Musa syncline (Boqea syncline), leading to a hydraulic connection between the Lower and the Upper Aquifer. Due to the identified transversal fault, the water of the Upper and Lower Aquifer mixed and emerged as springs at Ein Feshcha group.
基金the support of the Opening Fund of State Key Laboratory of Multiphase Flow in Power Engineering(SKLMF-KF-2102)。
文摘Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.
文摘Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect.
基金funded by the National Natural Science Foundation of China (No.U22A20166)Science and Technology Foundation of Guizhou Province (No.QKHJC-ZK[2023]YB074)+2 种基金Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical EngineeringInstitute of Rock and Soil MechanicsChinese Academy of Sciences (No.SKLGME022009)。
文摘In fractured geothermal reservoirs,the fracture networks and internal fluid flow behaviors can significantly impact the thermal performance.In this study,we proposed a non-Darcy rough discrete fracture network(NR-DFN)model that can simultaneously consider the fracture evolution and non-Darcy flow dynamics in studying the thermo-hydro-mechanical(THM)coupling processes for heat extraction in geothermal reservoir.We further employed the model on the Habanero enhanced geothermal systems(EGS)project located in Australia.First,our findings illustrate a clear spatial-temporal variation in the thermal stress and pressure perturbations,as well as uneven spatial distribution of shear failure in 3D fracture networks.Activated shear failure is mainly concentrated in the first fracture cluster.Secondly,channeling flow have also been observed in DFNs during heat extraction and are further intensified by the expansion of fractures driven by thermal stresses.Moreover,the combined effect of non-Darcy flow and fracture evolution triggers a rapid decline in the resulting heat rate and temperature.The NR-DFN model framework and the Habanero EGS's results illustrate the importance of both fracture evolution and non-Darcy flow on the efficiency of EGS production and have the potential to promote the development of more sustainable and efficient EGS operations for stakeholders.
基金supported by the National Natural Science Foundation of China with Grant No.12002334 for C.Z.,Zhejiang Provincial Natural Science Foundation(Grant No.LQ21A020004 for C.Z.)the Excellent Youth Natural Science Foundation of Zhejiang Province,National Science Foundation of Anhui Province(2108085QE226)China(No.LR21E060001 for L.Q.and C.Z.).C.Z.acknowledges the China Scholarship Council(No.202108330166)for providing him with a visiting scholarship at NUS,Singapore.
文摘Efficient and secure refueling within the vehicle refueling systems exhibits a close correlation with the issues concerning fuel backflow and gasoline evaporation.This paper investigates the transient flow behavior in fuel hose refilling and simplified tank fuel replenishment using the volume of fluid method.The numerical simulation is validated with the simplified hose refilling experiment and the evaporation simulation of Stefan tube.The effects of injection flow rate and injection directions have been discussed in the fuel hose refilling part.For both the experiment and simulation,the pressure at the end of the refueling pipe in the lower located nozzle case is 30%higher than that in the upper located nozzle case at a high flow rate,and the backflow phenomenon occurs at the lower filling mode.The fluid will directly flush into the first pipe elbow,changing the flow pattern from bubble flow to slug flow,which results in low-frequency and high-amplitude flowpressure fluctuations.Ahexane refueling system,consisting of a refueling pipe,fuel tank and a vapor return line,is analyzed,in which hexane evaporation is considered.At the early refueling period,a higher refueling rate will lead to more obvious splashing,which leads to a higher average mass of hexane vapor and pressure in the tank.Two optimized fuel tank designs are examined.The lower fuel tank filling port exhibits significantly lower vapor hexane in the fuel tank compared to the other design,resulting in a reduction of 200 Pa in the peak pressure in the tank,which contributes to a substantial reduction of gasoline loss during tank filling.
基金supported by the Russian Science Foundation(Grant No.23-29-00022).
文摘Heat engines based on reciprocating machines remain in demand as energy converters in a variety of industries around the world.The aim of the study was to evaluate the gas-dynamic,consumable and heat exchange characteristics of non-stationary air flows in a supply system with transverse profiling of valve channels based on experimental studies.Valve channels with cross sections in the form of a circle,square and triangle were used to control the consumable and heat exchange characteristics of the flows in the supply system of the reciprocatingengine model.The article presents data on changes in local velocity,volumetric airflow and instantaneous heat transfer coefficient of non-stationary airflow in supply systems with different valve channel designs.A spectral analysis of the pulsations of the local heat transfer coefficient was also performed.The Nusselt number was calculated for the studied supply systems.The figured valve channels lead to an increase in the volumetric airflow through the supply systemupto32%comparedwiththe basic configuration.The useof a square valve channel leads to suppression of heat transfer(drop is about 15%)compared to the basic supply system,and the use of a triangular valve channel causes an intensification of heat transfer(growth is about 17.5%).The obtained data can be useful for refining mathematical models,adjusting machine learning algorithms,and improving design methods for supply systems of reciprocating machines to improve their technical,economic,and environmental characteristics.