期刊文献+
共找到5,823篇文章
< 1 2 250 >
每页显示 20 50 100
Explicit Analytical Solutions of Coupled Fluid Flow Transfer Equation in Heterogeneous Porous Media
1
作者 张娜 蔡睿贤 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第2期187-189,共3页
Explicit analytical solutions are presented for the coupled fluid flow transfer equation in heterogeneous porous media. These analytical solutions are useful for their description of actual flow fields and as bench... Explicit analytical solutions are presented for the coupled fluid flow transfer equation in heterogeneous porous media. These analytical solutions are useful for their description of actual flow fields and as benchmark solutions to check the rapidly developing numerical calculations and to study various computational methods such as the discrete approximations of the governing equations and grid generation methods. In addition, some novel mathematical methods are used in the analyses. 展开更多
关键词 analytical solutions flow transfer permeable system
原文传递
Modelling Study to Compare the Flow and Heat Transfer Characteristics of Low-Power Hydrogen,Nitrogen and Argon Arc-Heated Thrusters 被引量:5
2
作者 王海兴 陈熙 +3 位作者 潘文霞 A.B.MURPHY 耿金越 贾少霞 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第6期692-701,共10页
A modelling study is performed to compare the plasma flow and heat transfer characteristics of low-power arc-heated thrusters (arcjets) for three different propellants: hydrogen, nitrogen and argon. The all-speed S... A modelling study is performed to compare the plasma flow and heat transfer characteristics of low-power arc-heated thrusters (arcjets) for three different propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, velocity and Mach number distributions calculated within the thruster nozzle obtained with different propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the flow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip; the flow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant flows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, specific enthMpies and thermal conductivities, are different, there are appreciable differences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest specific impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results. 展开更多
关键词 low-power arcjet plasma flow and heat transfer numerical modelling propellant-type effects
下载PDF
A modular parallelization framework for power flow transfer analysis of large-scale power systems 被引量:3
3
作者 Chuntian CHENG Bin LUO +1 位作者 Jianjian SHEN Shengli LIAO 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2018年第4期679-690,共12页
Power flow transfer(PFT) analysis under various anticipated faults in advance is important for securing power system operations. In China, PSD-BPA software is the most widely used tool for power system analysis, but i... Power flow transfer(PFT) analysis under various anticipated faults in advance is important for securing power system operations. In China, PSD-BPA software is the most widely used tool for power system analysis, but its input/output interface is easily adapted for PFT analysis,which is also difficult due to its computationally intensity.To solve this issue, and achieve a fast and accurate PFT analysis, a modular parallelization framework is developed in this paper. Two major contributions are included. One is several integrated PFT analysis modules, including parameter initialization, fault setting, network integrity detection, reasonableness identification and result analysis.The other is a parallelization technique for enhancing computation efficiency using a Fork/Join framework. The proposed framework has been tested and validated by the IEEE 39 bus reference power system. Furthermore, it has been applied to a practical power network with 11052 buses and 12487 branches in the Yunnan Power Grid ofChina, providing decision support for large-scale power system analysis. 展开更多
关键词 POWER flow transfer MODULAR PARALLELIZATION Fork/Join FRAMEWORK PSD-BPA
原文传递
Gas–liquid flow mass transfer in a T-shape microreactor stimulated with 1.7 MHz ultrasound waves 被引量:4
4
作者 Mona Akbari Masoud Rahimi Mahboubeh Faryadi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1143-1152,共10页
This paper describes the application of ultrasound waves on hydrodynamics and mass transfer characteristics in the gas–liquid flow in a T-shape microreactor with a diameter of 800 μm. A 1.7 MHz piezoelectric transdu... This paper describes the application of ultrasound waves on hydrodynamics and mass transfer characteristics in the gas–liquid flow in a T-shape microreactor with a diameter of 800 μm. A 1.7 MHz piezoelectric transducer(PZT) was employed to induce the vibration in this microreactor. Liquid side volumetric mass transfer coefficients were measured by physical and chemical methods of CO_2 absorption into water and Na OH solution. The approach of absorption of CO_2 into a 1 mol·L^(-1) Na OH solution was used for analysis of interfacial areas. With the help of a photography system, the fluid flow patterns inside the microreactor were analyzed. The effects of superficial liquid velocity, initial concentration of Na OH, superficial CO_2 gas velocity and length of microreactor on the mass transfer rate were investigated. The comparison between sonicated and plain microreactors(microreactor with and without ultrasound) shows that the ultrasound wave irradiation has a significant effect on kLa and interfacial area at various operational conditions. For the microreactor length of 12 cm, ultrasound waves improved kLa and interfacial area about 21% and 22%, respectively. From this study, it can be concluded that ultrasound wave irradiation in microreactor has a great effect on the mass transfer rate. This study suggests a new enhancement technique to establish high interfacial area and kLa in microreactors. 展开更多
关键词 Ultrasound waves MICROREACTOR Gas–liquid flow Mass transfer ABSORPTION
下载PDF
Gas–liquid mass transfer and flow phenomena in the Peirce–Smith converter: a water model study 被引量:5
5
作者 Xing Zhao Hong-liang Zhao +1 位作者 Li-feng Zhang Li-qiang Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第1期37-44,共8页
A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a... A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume (Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coeffi- cient), and gas utilization ratio (t/) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and n steadily increased. When the converter was rotated clockwise, both Ak/F and t/increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these para- meters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3.h-1 and 10°, respectively. 展开更多
关键词 Peirce-Smith converter water model mass transfer flow phenomena volumetric mass transfer coefficient
下载PDF
Modelling Study on the Plasma Flow and Heat Transfer in a Laminar Arc Plasma Torch Operating at Atmospheric and Reduced Pressure 被引量:1
6
作者 王海兴 陈熙 潘文霞 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第2期163-170,共8页
A modelling study is performed to investigate the characteristics of both plasma flow and heat transfer of a laminar non-transferred arc argon plasma torch operated at atmospheric and reduced pressure. It is found tha... A modelling study is performed to investigate the characteristics of both plasma flow and heat transfer of a laminar non-transferred arc argon plasma torch operated at atmospheric and reduced pressure. It is found that the calculated flow fields and temperature distributions are quite similar for both cases at a chamber pressure of 1.0 atm and 0.1 atm. A fully developed flow regime could be achieved in the arc constrictor-tube between the cathode and the anode of the plasma torch at 1.0 atm for all the flow rates covered in this study. However the flow field could not reach the fully developed regime at 0.1 atm with a higher flow rate. The arc-root is always attached to the torch anode surface near the upstream end of the anode, i.e. the abruptly expanded part of the torch channel, which is in consistence with experimental observation. The surrounding gas would be entrained from the torch exit into the torch interior due to a comparatively large inner diameter of the anode channel compared to that of the arc constrictor-tube. 展开更多
关键词 non-transferred arc torch plasma flow and heat transfer numerical modelling
下载PDF
NUMERICAL ANALYSIS OF THREE-DIMENSIONAL FLUID FLOW AND HEAT TRANSFER IN TIG WELD POOL WITH FULL PENETRATION 被引量:4
7
作者 WU Chuansong,CAO Zhenning,WU Lin Harbin Institute of Technology,Harbin,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1993年第8期130-136,共7页
A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpi... A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpieees,takes the are pressure as the drivingforce of the pool surface deformation,and determines the surface configuration of weldpool based on the dynamic balance of arc pressure,pool gravity and surface tension atdeformed weld pool surface. The SIMPLER algorithm is used to calculate the fluid flowfield and temperature distribution in TIG weld pools of stainless steel workpieces.TIGwelding experiments are made to verify the validity of the model.It shows the calculatedresults by the model are in good agreement with experimental measurements. professor,Dept of Welding Engineering,Harbin Institute of Technology,Harbin 150006,China 展开更多
关键词 TIG weld pool full penetration fluid flow heat transfer numerical analysis
下载PDF
Influence of nanoparticle concentrations on flow boiling heat transfer coefficients of Al_2O_3/R141b in micro heat exchanger by direct metal laser sintering 被引量:4
8
作者 Jianyang Zhou Xiaoping Luo +4 位作者 Cong Deng Mingyu Xie Lin Zhang Di Wu Feng Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第12期1714-1726,共13页
Al2O3/R141b + Span-80 nanorefrigerant for 0.05 wt.% to 0.4 wt.% is prepared by ultrasonic vibration to investigate the influence of nanoparticle concentrations on flow boiling heat transfer of Al2O3/R141b + Span-80... Al2O3/R141b + Span-80 nanorefrigerant for 0.05 wt.% to 0.4 wt.% is prepared by ultrasonic vibration to investigate the influence of nanoparticle concentrations on flow boiling heat transfer of Al2O3/R141b + Span-80 in micro heat exchanger by direct metal laser sintering. Experimental results show that nanoparticle concentrations have significantly impact on heat transfer coefficients by homogeneity test of variances according to mathematical statistics. The heat transfer performance of Al2O3/R141b + Span-80 nanorefrigerant is enhanced after adding nanoparticles in the pure refrigerant R141b. The heat transfer coefficients of 0.05 wt.%, 0.1 wt.%, 0.2 wt.%, 0.3 wt.% and 0.4 wt.% Al2O3/R141 b + Span-80 nanorefrigerant respectively increase by 55.0% 72.0%, 53.0% 42.3% and 39.9% compared with the pure refrigerant R141b. The particle fluxes from viscosity gradient, non-uniform shear rate and Brownian motion cause particles to migrate in fluid especially in the process of flow boiling. This migration motion enhances heat transfer between nanoparticles and fluid. Therefore, the heat transfer performance of nanofluid is enhanced. It is important to note that the heat transfer coefficients nonlinearly increase with nanoparticle concentrations increasing. The heat transfer coefficients reach its maximum value at the mass concentration of 0.1% and then it decreases slightly. There exists an optimal mass concentration corresponding to the best heat transfer enhancement. The reason for the above phenomenon is attributed to nanoparticles deposition on the minichannel wall by Scanning Electron Microscopy observation. The channel surface wettability increases during the flow boiling experiment in the mass concentration range from 0.2 wt.% to 0.4 wt.%. The channel surface with wettability increasing needs more energy to produce a bubble. Therefore, the heat transfer coefficients decrease with nanopartide concentrations in the range from 0.2 wt.% to 0.4 wt.%. In addition, a new correlation has been proposed by fitting the experimental data considering the influence of mass concentrations on the heat trans- fer performance. The new correlation can effectively predict the heat transfer coefficient. 展开更多
关键词 Nanoparticle Concentration Minichannel Sintering flow boiling Heat transfer coefficient
下载PDF
Large-eddy Simulation of Fluid Flow and Heat Transfer in a Mixing Tee Junction 被引量:2
9
作者 LU Tao WANG Yongwei WANG Kuisheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第6期1144-1150,共7页
The temperature fluctuation caused by thermal striping phenomena of hot and cold fluids mixing results in cyclical thermal stress fatigue failure of the pipe wall. Mean temperature difference between hot and cold flui... The temperature fluctuation caused by thermal striping phenomena of hot and cold fluids mixing results in cyclical thermal stress fatigue failure of the pipe wall. Mean temperature difference between hot and cold fluids was often used as thermal load in previous analysis of thermal fatigue failure, thereby the influences of the amplitude and frequency of temperature fluctuation on thermal fatigue failure were neglected. Based on the mechanism of flow and heat transfer which induces thermal fatigue, the turbulent mixing of hot and cold water in a tee junction is simulated with FLUENT platform by using the Large-eddy simulation(LES) turbulent flow model with the sub-grid scale(SGS) model of Smagorinsky-Lilly(SL) to capture the amplitude and frequency of temperature fluctuation. In a simulation case, hot water with temperature of 343.48 K and velocity of 0.15 m/s enters the horizontal main duct with the side length of 100 mm, while cold water with temperature of 296.78 K and velocity of 0.3 m/s enters the vertical branch duct with the side length of 50 mm. The numerical results show that the mean and fluctuating temperatures are in good agreement with the previous experimental data, which describes numerical simulation with high reliability and accuracy; the power spectrum density(PSD) on top wall is higher than that on bottom wall(as the frequency less than 1 Hz), while the PSD on bottom wall is relatively higher than that on top wall (as the frequency of 1-10Hz). The temperature fluctuations in full mixing region of the tee junction can be accurately captured by LES and can provide the theoretical basis for the thermal stress and thermal fatigue analyses. 展开更多
关键词 Large-eddy simulation flow heat transfer tee junction
下载PDF
Probabilistic interval prediction of metro-to-bus transfer passenger flow in the trip chain 被引量:2
10
作者 Shen Jin Zhao Jiandong +2 位作者 Gao Yuan Feng Yingzi Jia Bin 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期408-417,共10页
To accurately analyze the fluctuation range of time-varying differences in metro-to-bus transfer passenger flows,the application of a probabilistic interval prediction model is proposed to predict transfer passenger f... To accurately analyze the fluctuation range of time-varying differences in metro-to-bus transfer passenger flows,the application of a probabilistic interval prediction model is proposed to predict transfer passenger flows.First,bus and metro data are processed and matched by association to construct the basis for public transport trip chain extraction.Second,a reasonable matching threshold method to discriminate the transfer relationship is used to extract the public transport trip chain,and the basic characteristics of the trip based on the trip chain are analyzed to obtain the metro-to-bus transfer passenger flow.Third,to address the problem of low accuracy of point prediction,the DeepAR model is proposed to conduct interval prediction,where the input is the interchange passenger flow,the output is the predicted median and interval of passenger flow,and the prediction scenarios are weekday,non-workday,and weekday morning and evening peaks.Fourth,to reduce the prediction error,a combined particle swarm optimization(PSO)-DeepAR model is constructed using the PSO to optimize the DeepAR model.Finally,data from the Beijing Xizhimen subway station are used for validation,and results show that the PSO-DeepAR model has high prediction accuracy,with a 90%confidence interval coverage of up to 93.6%. 展开更多
关键词 urban traffic probabilistic interval prediction deep learning metro-to-bus transfer passenger flow trip chain
下载PDF
Numerical Simulation of Fluid Flow and Heat Transfer in Funnel Shaped Mold of Thin Slab Continuous Caster 被引量:2
11
作者 ZHU Miao-yong WANG Jun ZHANG Ying 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第6期14-19,共6页
Thin slab casting is used widely in the world. The control of molten steel flow and solidification in the mold is difficult due to the high casting speed and complicated configuration of the mold. Numerical simulation... Thin slab casting is used widely in the world. The control of molten steel flow and solidification in the mold is difficult due to the high casting speed and complicated configuration of the mold. Numerical simulation was carried out to study the fluid flow and heat transfer in the funnel shaped mold. The influence of nozzle design, casting speed and nozzle submersion depth on the flow and temperature fields in the mold was investigated, and guidance for selecting configurations of submerged nozzle was obtained. 展开更多
关键词 thin slab continuous casting fluid flow heat transfer numerical simulation
下载PDF
Analysis of material flow and heat transfer in friction stir welding of aluminium alloys 被引量:1
12
作者 宿浩 武传松 陈茂爱 《China Welding》 EI CAS 2013年第1期6-10,共5页
A three-dimensional viscous-plastic.finite element model is established based on computational fluid mechanics. The material during the welding process is considered as non-Newtonian fluid abided by Norton-Hoff consti... A three-dimensional viscous-plastic.finite element model is established based on computational fluid mechanics. The material during the welding process is considered as non-Newtonian fluid abided by Norton-Hoff constitutive law, and viscous dissipation is assumed as the unique heat source. The model is used to numerically simulate the material flow and heat transfer in friction stir welding, and capture some useful process characteristics, .such as heat generation, temperature distribution and fluid.flow; besides, the velocity field is used to calculate streamlines of material flow, and the dimension of the deformation zone is measured. 展开更多
关键词 friction stir welding material flow heat transfer modeling
下载PDF
Effects of fluid recirculation on mass transfer from the arterial surface to flowing blood 被引量:1
13
作者 Zhi-Guo Zhang Xi-Wen Zhang Ying-Xi Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期904-910,共7页
The effect of disturbed flow on the mass trans- fer from arterial surface to flowing blood was studied nu- merically, and the results were compared with that of our previous work. The arterial wall was assumed to be v... The effect of disturbed flow on the mass trans- fer from arterial surface to flowing blood was studied nu- merically, and the results were compared with that of our previous work. The arterial wall was assumed to be vis- coelastic and the blood was assumed to be incompressible and non-Newtonian fluid, which is more close to human arte- rial system. Numerical results indicated that the mass trans- fer from the arterial surface to flowing blood in regions of disturbed flow is positively related with the wall shear rates and it is significantly enhanced in regions of disturbed flow with a local minimum around the reattachment point which is higher than the average value of the downstream. There- fore, it may be implied that the accumulation of cholesterol or lipids within atheromatous plaques is not caused by the reduced efflux of cholesterol or lipids, but by the infiltration of the LDL (low-density lipoprotein) from the flowing blood to the arterial wall. 展开更多
关键词 Disturbed flow Arterial wall Mass transfer Atherosclerosis Wall shear rates
下载PDF
Modeling transient fluid flow and heat transfer phenothena in stationary pulsed current TIG weld pool 被引量:1
14
作者 Zheng Wei Wu Chuansong and Wu Lin(Harbin Institute of Technology, Harbin) 《China Welding》 EI CAS 1995年第2期139-149,共11页
A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for w... A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for weld pool convection, i,e. buoyancyforce, electromagnetic force and surface tension force. furthermore. the effect of vaporization heat flux at the free surface of weld pool and the temperature coefficient of surface tenston which is a function of temperatuer and composition are considered in the model In order to accelerate the convergence of iteration the AST(additive source term)method which concerns with the thermal energv boundary conditions is extended successfully to deal with the momentum boundary conditions by which the transient momentum equation and energy equation are mutually coupled. At the same time. ADI (Alternating direction implicit) method and DBC (double blocks correction) technque are employed to solve the finite difference equations. The results of numerical simulation demonstrate the transient behavior of PC-TIG weld pool, as well as the periodic variation of fluid flow and heat transfer with the periodic variation of welding current in stationary PC-TIG weld pool. The theoretical predictions based on this model are, shown to be in good accordance with the experimental measurements. 展开更多
关键词 numerical simulation pulsed current TIG. weld pool. fluid flow. heat transfer
下载PDF
Series solutions of annular axisymmetric stagnation flow and heat transfer on moving cylinder 被引量:1
15
作者 A.MASTROBERARDINO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第9期1043-1054,共12页
The steady, laminar, incompressible flow and heat transfer of a viscous fluid between two circular cylinders for two different types of thermal boundary conditions are investigated. The governing Navier-Stokes and the... The steady, laminar, incompressible flow and heat transfer of a viscous fluid between two circular cylinders for two different types of thermal boundary conditions are investigated. The governing Navier-Stokes and thermal equations of the flow are reduced to a nonlinear system of ordinary differential equations. The equations are solved analyt- ically using the homotopy analysis method (HAM). Convergence of the HAM solutions is discussed in detail. These solutions are then compared with recently obtained numericM and perturbative solutions. Plots of the velocity and temperature profiles are provided for various values of the relevant parameters. 展开更多
关键词 stagnation flow heat transfer moving cylinder boundary value problem homotopy analysis method (HAM)
下载PDF
Differential Quadrature Method for Steady Flow of an Incompressible Second-Order Viscoelastic Fluid and Heat Transfer Model 被引量:1
16
作者 A.S.J.AL-SAIF 朱正佑 《Journal of Shanghai University(English Edition)》 CAS 2005年第4期298-305,共8页
The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equation... The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a snmll parameter to get the zeroth- and first-order approximate equations. By using the differenl2al quadrature method with only a few grid points, the high-accurate numerical results were obtained. 展开更多
关键词 differential quadrature method(DQM) second-order viscoelastic fluid steady flow heat transfer.
下载PDF
MASS TRANSFER IN TURBULENT PULSATING FLOWS 被引量:1
17
作者 范忠良 毛卓雄 陈家镛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1993年第3期4-17,共14页
The effect of flow oscillation to the mass transfer between turbulent fluid and solid wall was investigatedby measuring the mass transfer rate between fluid and pipe wall with imposed oscillating flow usingelectrochem... The effect of flow oscillation to the mass transfer between turbulent fluid and solid wall was investigatedby measuring the mass transfer rate between fluid and pipe wall with imposed oscillating flow usingelectrochemical method.The velocity and concentration field in the viscous sublayer which controls the mass trans-fer in such a process was simulated by a simple wave model of single harmonics.Experimental results confirmthat the flow oscillation has no influene on time averaged mass transfer rate,but the phase difference betweenphase averaged velocity field and concentration field shifts with the frequency of imposed oscillating flow.Numeri-cal analysis reveals that the concentration boundarylayer which is responsible for the mass transfer is muchthinner than the viscous sublayer which greatly weakens the influence of imposed oscillating flow on mass transfer. 展开更多
关键词 MASS transfer TURBULENT flow pulsating flow
下载PDF
A numerical study on heat transfer enhancement and design of a heat exchanger with porous media in continuous hydrothermal flow synthesis system 被引量:2
18
作者 Pedram Karimi Pour-Fard Ebrahim Afshari +1 位作者 Masoud Ziaei-Rad Shahed Taghian-Dehaghani 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1352-1359,共8页
The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat e... The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions. 展开更多
关键词 Continuous hydrothermal flow synthesis Heat exchanger Heat transfer enhancement Porous media Numerical simulation
下载PDF
MHD flow and mass transfer of chemically reactive upper convected Maxwell fluid past porous surface 被引量:1
19
作者 K. VAJRAVELU K. V. PRASAD +1 位作者 A. SUJATHA 吴朝安 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第7期899-910,共12页
The magnetohydrodynamic (MHD) flow and mass transfer of an electrically conducting upper convected Maxwell (UCM) fluid at a porous surface are studied in the presence of a chemically reactive species. The governin... The magnetohydrodynamic (MHD) flow and mass transfer of an electrically conducting upper convected Maxwell (UCM) fluid at a porous surface are studied in the presence of a chemically reactive species. The governing nonlinear partial differential equations along with the appropriate boundary conditions are transformed into nonlinear ordinary differential equations and numerically solved by the Keller-box method. The effects of various physical parameters on the flow and mass transfer characteristics are graphically presented and discussed. It is observed that the order of the chemical reaction is to increase the thickness of the diffusion boundary layer. Also, the mass transfer rate strongly depends on the Schmidt number and the reaction rate parameter. Furthermore, available results in the literature are obtained as a special case. 展开更多
关键词 chemically reactive species upper convected Maxwell (UCM) fluid mag-netohydrodynamic (MHD) flow mass transfer Keller-box method
下载PDF
Flow and heat transfer of a nanofluid over a hyperbolically stretching sheet
20
作者 A.Ahmad S.Asghar A.Alsaedi 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期I0004-I0006,475-478,共7页
This article explores the boundary layer flow and heat transfer of a viscous nanofluid bounded by a hyperbolically stretching sheet. Effects of Brownian and thermophoretic diffusions on heat transfer and concentration... This article explores the boundary layer flow and heat transfer of a viscous nanofluid bounded by a hyperbolically stretching sheet. Effects of Brownian and thermophoretic diffusions on heat transfer and concentration of nanoparticles are given due attention. The resulting nonlinear problems are computed for analytic and numerical solutions. The effects of Brownian motion and thermophoretic property are found to increase the temperature of the medium and reduce the heat transfer rate. The thermophoretic property thus enriches the concentration while the Brownian motion reduces the concentration of the nanoparticles in the fluid. Opposite effects of these properties are observed on the Sherwood number. 展开更多
关键词 hyperbolically stretching sheet NANOFLUID boundary layer flow heat transfer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部