The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic proper...The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic properties of the peak lift and drag coefficients and base pressure drop over the cylinder with the uncertainties of viscosity coefficient and inflow boundary velocity. As for the numerical results of flows around a cylinder, influence of the inflow boundary velocity uncertainty is larger than that of viscosity. The results indeed demonstrate that a five-order degree of polynomial chaos expansion is enough to represent the solution of flow in this study.展开更多
In this paper, we investigate the verification and validation(V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various R...In this paper, we investigate the verification and validation(V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model(DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety(FS1), the Factor of Safety(FS) and the Grid Convergence Index(GCI). The distribution of the area without achieving the validation at the U v level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11371069the Young Foundation of Institute of Applied Physics and Computational Mathematics under Grant No ZYSZ1518-13the Science Foundation of China Academy of Engineering Physics under Grant No 2013A0101004
文摘The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic properties of the peak lift and drag coefficients and base pressure drop over the cylinder with the uncertainties of viscosity coefficient and inflow boundary velocity. As for the numerical results of flows around a cylinder, influence of the inflow boundary velocity uncertainty is larger than that of viscosity. The results indeed demonstrate that a five-order degree of polynomial chaos expansion is enough to represent the solution of flow in this study.
基金Project supported by the National Natural Science Foundation of China(Project Nos.51576143,11472197)
文摘In this paper, we investigate the verification and validation(V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model(DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety(FS1), the Factor of Safety(FS) and the Grid Convergence Index(GCI). The distribution of the area without achieving the validation at the U v level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution.