期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Measurements of Non-reacting and Reacting Flow Fields of a Liquid Swirl Flame Burner
1
作者 CHONG Cheng Tung HOCHGREB Simone 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期394-401,共8页
The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device.Characterisation of the flow field of a model gas turbine ... The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device.Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a2-D particle imaging velocimetry(PIV)system.The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions,i.e.,with and without the combustor wall.The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions.The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume.The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow.Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet,where the radial velocity components increase for both open and confined environment.Under reacting condition,the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity.The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants.The flow field data can be used as validation target for swirl combustion modelling. 展开更多
关键词 flow field swirl flame gas turbine burner particle imaging velocimetry(PIV)
下载PDF
COMPUTATIONAL AND EXPERI-MENTAL STUDY ON TIP LEAKAGE VORTEX OF CIRCUMFERENTIAL SKEWED BLADES 被引量:4
2
作者 LI Yang OUYANG Hua DU Zhaohui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期82-87,共6页
In the steady operation condition, the experiments and the numerical simulations are used to investigate the tip leakage flow fields in three low pressure axial flow fans with three kinds of circumferential skewed rot... In the steady operation condition, the experiments and the numerical simulations are used to investigate the tip leakage flow fields in three low pressure axial flow fans with three kinds of circumferential skewed rotors, including the radial rotor, the forward-skewed rotor and the back- ward-skewed rotor. The three-dimensional viscous flow fields of the fans are computed. In the experiments, the two-dimensional plane particle image velocimetry (PIV) system is used to measure the flow fields in the tip region of three different pitchwise positions of each fan. The results show that the computational results agree well with the experimental data in the flow field of the tip region of each fan. The tip leakage vortex core segments based on method of the eigenmode analysis can display clearly some characteristics of the tip leakage vortex, such as the origination position of tip leak- age vortex, the development of vortex strength, and so on. Compared with the radial rotor, the other two skewed rotors can increase the stability of the tip leakage vortex and the increment in the forward-skewed rotor is more than that in the backward-skewed one. Among the tip leakage vortices of the three rotors, the velocity of the vortex in the forward-skewed rotor is th6 highest in the circumferential direction and the lowest in the axial direction. 展开更多
关键词 Low pressure axial flow fan Tip leakage vortex Particle image velocimetry (PIV) Eigenmode analysis
下载PDF
Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets 被引量:8
3
作者 Shao-Qiong Yang Shan Li +2 位作者 Hai-Ping Tian Qing-Yi Wang Nan Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期284-294,共11页
Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect.In the present study,the effect of shark-skin-insp... Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect.In the present study,the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer(TBL) is investigated.This is done by means of tomographic particle image velocimetry(TPIV) measurements in channel fl ws over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190.The turbulent fl ws over drag-reducing riblets are verifie by a planar time-resolved particle image velocimetry(TRPIV) system initially,and then the TPIV measurements are performed.Two-dimensional(2D) experimental results with a dragreduction rate of around 4.81% are clearly visible over triangle riblets with a peak-to-peak spacing s+of 14,indicating from the drag-reducing performance that the buffer layer within the TBL has thickened;the logarithmic law region has shifted upward and the Reynolds shear stress decreased.A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudesof the spanwise vorticity when ejection(Q2) and sweep(Q4) events occur at the near wall,having the greatest effect on Q4 events in particular.The so-called quadrupole statistical model for coherent structures in the whole TBL is verified Meanwhile,their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent fl w over riblets are changed,suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events(Q2 and Q4),thereby reducing the skin friction drag. 展开更多
关键词 Turbulent boundary layer(TBL) Coherent vortex structure flow control Drag reduction Shark-skininspired riblet Tomographic particle image velocimetry(TPIV)
下载PDF
NUMERICAL SIMULATION BY COMPUTATIONAL FLUID DYNAMICS AND EXPERIMENTAL STUDY ON STIRRED BIOREACTOR WITH PUNCHED IMPELLER 被引量:1
4
作者 WANG Yu HE Pingting +1 位作者 YE Hong XIN Zhihong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期42-45,共4页
Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred... Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value. 展开更多
关键词 Stirred bioreactor with punched impeller Computational fluid dynamics(CFD)Particle image velocimetry(PIV) flow field Temperature field
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部