The floral-organ-number mutant fon(t) was firstly discovered in the progeny of a cross between a diploid (Chunjiang 683) and a haploid (SARⅣ/-620-A) rice cultivar. The fon(t) mutant showed normal vegetative d...The floral-organ-number mutant fon(t) was firstly discovered in the progeny of a cross between a diploid (Chunjiang 683) and a haploid (SARⅣ/-620-A) rice cultivar. The fon(t) mutant showed normal vegetative development and produced normal inflorescence structures. Difference between the mutant and the wild type was observed when the stamen primordia began to form. The mature flowers offon(t) mutant showed open-hull phenotypes, which resulted in the exposure of stamens and stigmas. Normally, a single fon(t) floret consisted of six to nine stamens and one or two pistils. In addition, stamen/pistil-like structures and bulged tissues near ovaries were also observed in a few fon(t) florets. But homeotic transformation of lodicules into palea/lemma-like organs was observed almost in all the open-hull florets. The phenotypes offon(t) flowers also suggested thatfon(t) gene might affect flower organ identity in the inner whorls. Genetic analysis showed that thefon(t) mutant was controlled by a single recessive gene.展开更多
The research in the genetics of sex determination and the differentiation of reproductive organs in flowering plants has long been a topic in recent years. Understanding the genetic and molecular mechanisms that contr...The research in the genetics of sex determination and the differentiation of reproductive organs in flowering plants has long been a topic in recent years. Understanding the genetic and molecular mechanisms that control sex determination in flower- ing plants relies on detailed studies of the differentiation of sexual organs. Current theories about sex chromosomes have illuminated the mechanisms of plant sex determination. In addition, recent progress in cloning floral homeotic genes which regulate the identity of the floral organs has generated molecular markers to compare the developmental programs of male, female and hermaphrodite flowers in several species. In this review, the authors focus attention on these recent findings and provide a brief overview of the genetics of plant sex determination and the mechanism of sex determination gene expression and gene programs.展开更多
Although AGAMOUS-LIKE6 (AGL6) MADS-box genes are ancient with wide distributions in gymnosperms and angiosperms, their functions remain poorly understood. Here, we show the biological role of the AGL6-1ike gene, OsMAD...Although AGAMOUS-LIKE6 (AGL6) MADS-box genes are ancient with wide distributions in gymnosperms and angiosperms, their functions remain poorly understood. Here, we show the biological role of the AGL6-1ike gene, OsMADS6, in specifying floral organ and meristem identities in rice (Oryza sativa L.). OsMADS6 was strongly ex- pressed in the floral meristem at early stages. Subsequently, OsMADS6 transcripts were mainly detectable in paleas, lodicules, carpels and the integument of ovule, as well as in the receptacle. Compared to wild type plants, osmads6 mutants displayed altered palea identity, extra glume-like or mosaic organs, abnormal carpel development and loss of floral meristem determinacy. Strikingly, mutation of a SEPALLATA (SEP)-like gene, OsMADS1 (LHS1), enhanced the defect of osmads6 flowers, and no inner floral organs or glume-like structures were observed in whorls 2 and 3 of osmadsl-z osmads6-1 flowers. Furthermore, the osmadsl-z osmads6-1 double mutants developed severely indetermi- nate floral meristems. Our finding, therefore, suggests that the ancient OsMADS6 gene is able to specify "floral state" by determining floral organ and meristem identities in monocot crop rice together with OsMADS1.展开更多
This study was conducted to investigate the dynamic changes of several hormones in Rhododendron simsii floral organs to provide theoretical basis for controlling its flowering period. A R. simsii variety "Purple Cran...This study was conducted to investigate the dynamic changes of several hormones in Rhododendron simsii floral organs to provide theoretical basis for controlling its flowering period. A R. simsii variety "Purple Crane" was selected as the experimental material, and its flower organs were sampled at nine floral developmental stages to measure the contents of gibberellic acid-3 (GA3 ), abscisic acid (ABA), indole-3-acetic acid (IAA), and zeatin riboside (ZR) through enzyme-linked immunosorbent assay (ELISA). The results showed that the content of ZR was highest at full flowering stage; IAA and GA3 contents were higher than other stages in the process of flower bud differentiation and flowering. ABA played an important role in the regulation of flower bud formation. The results will provide theoretical references for exploring the regulation of plant hormones towards Rhododendron flower traits and breeding new varieties.展开更多
[Objectives] This study was conducted to analyze the current status of soil quality in Chongqing and provide scientific data for the rejuvenation of flowering cherry in the botanical park of the city. [Methods] With t...[Objectives] This study was conducted to analyze the current status of soil quality in Chongqing and provide scientific data for the rejuvenation of flowering cherry in the botanical park of the city. [Methods] With the flowering cherry soil in Chongqing Botanical Park as the research object, the typical soil in this area was investigated and improved. [Results] After applying soil conditioners, the pH value of the surface soil decreased from 7.32 to 6.34, and the pH value of the bottom soil decreased from 7.52 to 6.77;and the surface soil organic matter increased from 35.2 to 54.1 g/kg, and the bottom soil organic matter increased from 15.7 to 26.3 g/kg. [Conclusions] The soil has strong buffering capacity, and it is difficult to achieve rapid adjustment of soil pH and organic matter in actual work. Soil improvement needs to be carried out step by step. After targeted improvement, further maintenance is required in the later stage.展开更多
A spontaneous mutant with multiple stigmas (msf) was found in an indica rice line 466. The mst mutant exhibits normal at the vegetative development stage and produces normal inflorescence structures. The difference ...A spontaneous mutant with multiple stigmas (msf) was found in an indica rice line 466. The mst mutant exhibits normal at the vegetative development stage and produces normal inflorescence structures. The difference between the mutant and the wild type was observed when the stamen primordium began to develop. In the mst florets, palea and lemma opened, Iodicules were homeotically transformed into palea/lemma-like structures, and stamens were homeotically transformed into carpel-like structures. It looked like multiple stigmas being full of the whole floret. The phenotypic changes of rest were very similar to that of B-like mutant spwl. Compared with other mutants with pistillate morphologies, the severe mstflorets showed that the inner three floral organs were completely changed into palea/lemma-like structures. Moreover, the mutant was female sterile. Occasionally, with the changing environment, one or two stamens were fertile. Genetic analysis indicated that the mutant traits were controlled by a single recessive gene.展开更多
A pot experiment was conducted to investigate the comparative effect of cow manure vermicompost and NPK fertilizers on the growth and flower production of Zinnia (Zinnia elegans). An air dried sandy loam soil was mixe...A pot experiment was conducted to investigate the comparative effect of cow manure vermicompost and NPK fertilizers on the growth and flower production of Zinnia (Zinnia elegans). An air dried sandy loam soil was mixed with four rates of NPK fertilizer equivalent to 0 (control), 0.5 dose (N-P-K = 69-16-35 kg·haǃ), 1 dose (recommended) (N-P-K = 137-32-70 kg·haǃ), 2 doses (N-P-K = 274-64-140 kg·haǃ) and 4 doses (N-P-K = 548-128-280 kg·haǃ) and three rates of vermicompost equivalent to 5%, 10%, 20% by oven dry weight. Two plants were grown in each pot. After blooming of flowers, the plants were harvested at 50 days of growth and leaves and stems were separated. The growth parameters (shoot height, root length, leaf number, total number of flower, flower diameter, fresh and dry weight of flower) of Zinnia plant increased by the application of vermicompost and the effect of NPK fertilizer was not found effective. The growth performance was similar between 10% and 20% and hence 10% vermicompost should be taken into consideration when ornamental plants are grown in potting media.展开更多
基金This work was supported by the Program for Changjiang Scholars and Innovative Research Team in University (No. IRTO453)
文摘The floral-organ-number mutant fon(t) was firstly discovered in the progeny of a cross between a diploid (Chunjiang 683) and a haploid (SARⅣ/-620-A) rice cultivar. The fon(t) mutant showed normal vegetative development and produced normal inflorescence structures. Difference between the mutant and the wild type was observed when the stamen primordia began to form. The mature flowers offon(t) mutant showed open-hull phenotypes, which resulted in the exposure of stamens and stigmas. Normally, a single fon(t) floret consisted of six to nine stamens and one or two pistils. In addition, stamen/pistil-like structures and bulged tissues near ovaries were also observed in a few fon(t) florets. But homeotic transformation of lodicules into palea/lemma-like organs was observed almost in all the open-hull florets. The phenotypes offon(t) flowers also suggested thatfon(t) gene might affect flower organ identity in the inner whorls. Genetic analysis showed that thefon(t) mutant was controlled by a single recessive gene.
文摘The research in the genetics of sex determination and the differentiation of reproductive organs in flowering plants has long been a topic in recent years. Understanding the genetic and molecular mechanisms that control sex determination in flower- ing plants relies on detailed studies of the differentiation of sexual organs. Current theories about sex chromosomes have illuminated the mechanisms of plant sex determination. In addition, recent progress in cloning floral homeotic genes which regulate the identity of the floral organs has generated molecular markers to compare the developmental programs of male, female and hermaphrodite flowers in several species. In this review, the authors focus attention on these recent findings and provide a brief overview of the genetics of plant sex determination and the mechanism of sex determination gene expression and gene programs.
基金We gratefully acknowledge B Han from National Center for Gene Research, Chinese Academy of Sciences (CAS) and Rice Genome Resource Center (RGRC) for providing BAC clone, cDNA clone and Tosl7 insertion line. We thank Z-J Luo and M-J Chen from Shanghai Jiao Tong University for mutant screening and generation of F2 populations, X-Y Gao from Institute of Plant Physiology and Ecology, SIBS, CAS, for SEM, H Yu from Nation- al University Of Singapore for critical reading of this manuscript and H Ma from Fudan University for helpful discussion. This work was supported by funds from the National Basic Research Program of China (2009CB941500, 2006CB 101700), the National Natural Science Foundation of China (30725022, 30830014 and 90717109) and the Shanghai Leading Academic Discipline Project (B205).
文摘Although AGAMOUS-LIKE6 (AGL6) MADS-box genes are ancient with wide distributions in gymnosperms and angiosperms, their functions remain poorly understood. Here, we show the biological role of the AGL6-1ike gene, OsMADS6, in specifying floral organ and meristem identities in rice (Oryza sativa L.). OsMADS6 was strongly ex- pressed in the floral meristem at early stages. Subsequently, OsMADS6 transcripts were mainly detectable in paleas, lodicules, carpels and the integument of ovule, as well as in the receptacle. Compared to wild type plants, osmads6 mutants displayed altered palea identity, extra glume-like or mosaic organs, abnormal carpel development and loss of floral meristem determinacy. Strikingly, mutation of a SEPALLATA (SEP)-like gene, OsMADS1 (LHS1), enhanced the defect of osmads6 flowers, and no inner floral organs or glume-like structures were observed in whorls 2 and 3 of osmadsl-z osmads6-1 flowers. Furthermore, the osmadsl-z osmads6-1 double mutants developed severely indetermi- nate floral meristems. Our finding, therefore, suggests that the ancient OsMADS6 gene is able to specify "floral state" by determining floral organ and meristem identities in monocot crop rice together with OsMADS1.
基金Supported by the Scientific and Technological Research Program of Department of Science and Technology of Hubei Province(Q20152903)
文摘This study was conducted to investigate the dynamic changes of several hormones in Rhododendron simsii floral organs to provide theoretical basis for controlling its flowering period. A R. simsii variety "Purple Crane" was selected as the experimental material, and its flower organs were sampled at nine floral developmental stages to measure the contents of gibberellic acid-3 (GA3 ), abscisic acid (ABA), indole-3-acetic acid (IAA), and zeatin riboside (ZR) through enzyme-linked immunosorbent assay (ELISA). The results showed that the content of ZR was highest at full flowering stage; IAA and GA3 contents were higher than other stages in the process of flower bud differentiation and flowering. ABA played an important role in the regulation of flower bud formation. The results will provide theoretical references for exploring the regulation of plant hormones towards Rhododendron flower traits and breeding new varieties.
基金Supported by Chongqing City Administration Bureau Science and Technology Planning Project(YKZ 2017 05)Science and Technology Platform and Base Construction of Chongqing City(cstc2014gjhz20001)Chongqing Science and Technology Planning Project(cstc2011pt-gc80019)
文摘[Objectives] This study was conducted to analyze the current status of soil quality in Chongqing and provide scientific data for the rejuvenation of flowering cherry in the botanical park of the city. [Methods] With the flowering cherry soil in Chongqing Botanical Park as the research object, the typical soil in this area was investigated and improved. [Results] After applying soil conditioners, the pH value of the surface soil decreased from 7.32 to 6.34, and the pH value of the bottom soil decreased from 7.52 to 6.77;and the surface soil organic matter increased from 35.2 to 54.1 g/kg, and the bottom soil organic matter increased from 15.7 to 26.3 g/kg. [Conclusions] The soil has strong buffering capacity, and it is difficult to achieve rapid adjustment of soil pH and organic matter in actual work. Soil improvement needs to be carried out step by step. After targeted improvement, further maintenance is required in the later stage.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University of China (Grant No. IRTO453)
文摘A spontaneous mutant with multiple stigmas (msf) was found in an indica rice line 466. The mst mutant exhibits normal at the vegetative development stage and produces normal inflorescence structures. The difference between the mutant and the wild type was observed when the stamen primordium began to develop. In the mst florets, palea and lemma opened, Iodicules were homeotically transformed into palea/lemma-like structures, and stamens were homeotically transformed into carpel-like structures. It looked like multiple stigmas being full of the whole floret. The phenotypic changes of rest were very similar to that of B-like mutant spwl. Compared with other mutants with pistillate morphologies, the severe mstflorets showed that the inner three floral organs were completely changed into palea/lemma-like structures. Moreover, the mutant was female sterile. Occasionally, with the changing environment, one or two stamens were fertile. Genetic analysis indicated that the mutant traits were controlled by a single recessive gene.
文摘A pot experiment was conducted to investigate the comparative effect of cow manure vermicompost and NPK fertilizers on the growth and flower production of Zinnia (Zinnia elegans). An air dried sandy loam soil was mixed with four rates of NPK fertilizer equivalent to 0 (control), 0.5 dose (N-P-K = 69-16-35 kg·haǃ), 1 dose (recommended) (N-P-K = 137-32-70 kg·haǃ), 2 doses (N-P-K = 274-64-140 kg·haǃ) and 4 doses (N-P-K = 548-128-280 kg·haǃ) and three rates of vermicompost equivalent to 5%, 10%, 20% by oven dry weight. Two plants were grown in each pot. After blooming of flowers, the plants were harvested at 50 days of growth and leaves and stems were separated. The growth parameters (shoot height, root length, leaf number, total number of flower, flower diameter, fresh and dry weight of flower) of Zinnia plant increased by the application of vermicompost and the effect of NPK fertilizer was not found effective. The growth performance was similar between 10% and 20% and hence 10% vermicompost should be taken into consideration when ornamental plants are grown in potting media.