The timing of flowering(FL)and leaf unfolding(LU)determine plants’reproduction and vegetative growth.Global warming has substantially advanced FL and LU of temperate and boreal plants,but their responses to warming d...The timing of flowering(FL)and leaf unfolding(LU)determine plants’reproduction and vegetative growth.Global warming has substantially advanced FL and LU of temperate and boreal plants,but their responses to warming differ,which may influence the time interval between FL and LU(ΔLU-FL),thereby impacting plant fitness and intraspecific physiological processes.Based on twigs collected from two flowering-first tree species,Populus tomentosa and Amygdalus triloba,we conducted a manipulative experiment to investigate the effects of winter chilling,spring warming and photoperiod on theΔLU-FL.We found that photoperiod did not affect theΔLU-FL of Amygdalus triloba,but shortenedΔLU-FL by 5.1 d of Populus tomentosa.Interestingly,spring warming and winter chilling oppositely affected theΔLU-FL of both species.Specifically,low chilling accumulation extended theΔLU-FL by 3.8 and 9.4 d for Populus tomentosa and Amygdalus triloba,but spring warming shortened theΔLU-FL by 4.1 and 0.2 d℃^(-1).Our results indicate that climate warming will decrease or increase theΔLU-FL depending on the warming periods,i.e.,spring or winter.The shifted time interval between flowering and leaf unfolding may have ecological effects including affecting pollen transfer efficiency and alter the structure and functioning of terrestrial ecosystem.展开更多
基金the National Funds for Distinguished Young Scholar(42025101)the International Cooperation and Exchanges NSFC-FWO(32111530083)the 111 Project(B18006)。
文摘The timing of flowering(FL)and leaf unfolding(LU)determine plants’reproduction and vegetative growth.Global warming has substantially advanced FL and LU of temperate and boreal plants,but their responses to warming differ,which may influence the time interval between FL and LU(ΔLU-FL),thereby impacting plant fitness and intraspecific physiological processes.Based on twigs collected from two flowering-first tree species,Populus tomentosa and Amygdalus triloba,we conducted a manipulative experiment to investigate the effects of winter chilling,spring warming and photoperiod on theΔLU-FL.We found that photoperiod did not affect theΔLU-FL of Amygdalus triloba,but shortenedΔLU-FL by 5.1 d of Populus tomentosa.Interestingly,spring warming and winter chilling oppositely affected theΔLU-FL of both species.Specifically,low chilling accumulation extended theΔLU-FL by 3.8 and 9.4 d for Populus tomentosa and Amygdalus triloba,but spring warming shortened theΔLU-FL by 4.1 and 0.2 d℃^(-1).Our results indicate that climate warming will decrease or increase theΔLU-FL depending on the warming periods,i.e.,spring or winter.The shifted time interval between flowering and leaf unfolding may have ecological effects including affecting pollen transfer efficiency and alter the structure and functioning of terrestrial ecosystem.