Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press...Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.展开更多
Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS response...Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS responses associated with near-wellbore hydraulic fracture properties is still unclear.To address this knowledge gap,we use coupled wellbore-reservoir-geomechanics simulations to study measured strain-change behavior and infer hydraulic fracture characteristics.The crossflow among fractures is captured through explicit modeling of the transient wellbore flow.In addition,local grid refinement is applied to accurately capture strain changes along the fiber.A Base Case model was designed with four fractures of varying properties,simulating strain change signals when the production well is shut-in for 10 d after 240 d of production and reopened for 2 d.Strain-pressure plots for different fracture clusters were used to gain insights into inferring fracture properties using DSS data.When comparing the model with and without the wellbore,distinct strain change signals were observed,emphasizing the importance of incorporating the wellbore in FO-DSS modeling.The effects of fracture spacing and matrix permeability on strain change signals were thoroughly investigated.The results of our numerical study can improve the understanding of the relation between DSS signals and fracture hydraulic properties,thus maximizing the value of the dataset for fracture diagnostics and characterization.展开更多
The backreaming operation plays a significant role in safe drilling for horizontal wellbores, while it may cause severe stuck pipe accidents. To lower the risk of the stuck pipe in backreaming operations, the mechanis...The backreaming operation plays a significant role in safe drilling for horizontal wellbores, while it may cause severe stuck pipe accidents. To lower the risk of the stuck pipe in backreaming operations, the mechanism of cuttings transport needs to be carefully investigated. In this research, a transient cuttings transport with multiple flow patterns model is developed to predict the evolution of cuttings transported in the annulus while backreaming. The established model can provide predictions of the distribution of cuttings bed along the wellbore considering the bulldozer effect caused by large-size drilling tools(LSDTs). The sensitivity analyses of the size of LSDTs, and backreaming operating parameters are conducted in Section 4. And a new theory is proposed to explain the mechanism of cuttings transport in the backreaming operation, in which both the bit and LSDTs have the “cleaning effect” and “plugging effect”.The results demonstrate that the cuttings bed in annuli is in a state of dynamic equilibrium, but the overall trend and the distribution pattern are obvious. First, larger diameters and longer drilling tools could lead to a higher risk of the stuck pipe. Second, we find that it is not the case that the higher flow rate is always better for hole cleaning, so three flow-rate intervals are discussed separately under the given conditions. When the “dangerous flow rate”(<33 L/s in Case 4) is employed, the cuttings bed completely blocks the borehole near the step surface and causes a stuck pipe directly. If the flow rate increases to the “low flow rate” interval(33-35 L/s in Case 4), a smaller flow rate instead facilitates borehole cleaning. If the flow rate is large enough to be in the “high flow rate” interval(>35 L/s in Case 4),the higher the flow rate, the better the cleaning effect of cuttings beds. Third, an interval of tripping velocity called “dangerous velocity” is proposed, in which the cuttings bed accumulation near the LSDTs is more serious than those of other tripping velocities. As long as the applied tripping velocity is not within the “dangerous velocity”(0.4-0.5 m/s in Case 5) interval in the backreaming operation, the risk of the stuck pipe can be controlled validly. Finally, through the factors analyses of the annular geometry,particle properties, and fluid properties in Section 5, it can be found that the “low flow rate”, “high flow rate” and “dangers flow rate” tend to decrease and the “dangerous velocity” tends to increase with the conditions more favorable for hole cleaning. This study has some guiding significance for risk prediction and parameter setting of the backreaming operation.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
To address the issue of horizontal well production affected by the distribution of perforation density in the wellbore,a numerical model for simulating two-phase flow in a horizontal well is established under two perf...To address the issue of horizontal well production affected by the distribution of perforation density in the wellbore,a numerical model for simulating two-phase flow in a horizontal well is established under two perforation density distribution conditions(i.e.increasing the perforation density at inlet and outlet sections respectively).The simulation results are compared with experimental results to verify the reliability of the numerical simulation method.The behaviors of the total pressure drop,superficial velocity of air-water two-phase flow,void fraction,liquid film thickness,air production and liquid production that occur with various flow patterns are investigated under two perforation density distribution conditions based on the numerical model.The total pressure drop,superficial velocity of the mixture and void fraction increase with the air flow rate when the water flow rate is constant.The liquid film thickness decreases when the air flow rate increases.The liquid and air productions increase when the perforation density increases at the inlet section compared with increasing the perforation density at the outlet section of the perforated horizontal wellbore.It is noted that the air production increases with the air flow rate.Liquid production increases with the bubble flow and begins to decrease at the transition point of the slug-stratified flow,then increases through the stratified wave flow.The normalized liquid flux is higher when the perforation density increases at the inlet section,and increases with the radial air flow rate.展开更多
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale...Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.展开更多
Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productiv...Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productivity and formulating proper development strategies.This study establishes a new well test interpretation model for fractured horizontal wells based on seepage mechanisms of shale reservoirs and proposes a method for identifying fracturing patterns based on the characteristic slopes of pressure buildup curves and curve combination patterns.The pressure buildup curve patterns are identified to represent three types of shale reservoirs in the Sichuan Basin,namely the moderately deep shale reservoirs with high pressure,deep shale reservoirs with ultra-high pressure,and moderately deep shale reservoirs with normal pressure.Based on this,the relationship between the typical pressure buildup curve patterns and the fracture network types are put forward.Fracturing effects of three types of shale gas reservoir are compared and analyzed.The results show that typical flow patterns of shale reservoirs include bilinear flow in primary and secondary fractures,linear flow in secondary fractures,bilinear flow in secondary fractures and matrix,and linear flow in matrix.The fracture network characteristics can be determined using the characteristic slopes of pressure buildup curves and curve combinations.The linear flow in early secondary fractures is increasingly distinct with an increase in primary fracture conductivity.Moreover,the bilinear flow in secondary fractures and matrix and the subsequent linear flow in the matrix occur as the propping and density of secondary fractures increase.The increase in the burial depth,in-situ stress,and stress difference corresponds to a decrease in the propping of primary fractures that expand along different directions in the shale gas wells in the Sichuan Basin.Four pressure buildup curve patterns exist in the Sichuan Basin and its periphery.The pattern of pressure buildup curves of shale reservoirs in the Yongchuan area can be described as 1/2/→1/4,indicating limited stimulated reservoir volume,poorly propped secondary fractures,and the forming of primary fractures that extend only to certain directions.The pressure buildup curves of shale reservoirs in the main block of the Fuling area show a pattern of 1/4/→1/2 or 1/2,indicating greater stimulated reservoir volume,well propped secondary fractures,and the forming of complex fracture networks.The pattern of pressure buildup curves of shale reservoirs in the Pingqiao area is 1/2/→1/4→/1/2,indicating a fracturing effect somewhere between that of the Fuling and Yongchuan areas.For reservoirs with normal pressure,it is difficult to determine fracture network characteristics from pressure buildup curves due to insufficient formation energy and limited liquid drainage.展开更多
Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inac...Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system.展开更多
Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves...Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.展开更多
A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were dev...A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were developed based on the well liquid flow equation. FBHPs during the production were predicted by considering the effect of entrained liquid on gravitational gradients. Comparison of calculated BHPs by Cullender-Smith and proposed method was also studied. The results show that the proposed algorithm gives the desired accuracy of calculating BHPs in the low- productivity and low-pressure CBM wells. FBHP is resulted from the combined action of wellhead pressure, gas column pressure and fluid column pressure. Variation of kinetic energy term, compressibility and friction factors with depth increments and liquid holdup with velocity should be considered to simulate the real BHPs adequately. BHP is a function of depth of each column segment. The small errors of less than 1.5% between the calculated and measured values are obtained with each segment within 25 m. Adjusting BHPs can effectively increase production pressure drop, which is beneficial to CBM desorption and enhances reservoir productivity. The increment of pressure drop from 5.37 MPa2 to 8.66 MPa2 leads to an increase of CBM production from 3270 m3/d to 6700 m3/d and is attributed to a decrease in BHP from 2.25 MPa to 1.33 MPa.展开更多
A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multi...A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multiphase flow database with 3561 groups of data and developed a drift closure relationship with stable continuity and high adaptability.Second,a high-order numerical scheme with strong fault capture ability is constructed by effectively combining MUSCL technology,van Albada slope limiter and AUSMV numerical scheme.Finally,the energy equation is coupled into the AUSMV numerical scheme of the drift flow model in the form of finite difference.A transient non-isothermal wellbore multiphase flow model with wide applicability is formed by integrating the three technologies,and the effects of various factors on the calculation accuracy are studied.The accuracy of the simulator is verified by comparing the measurement results with the blowout experiment of a full-scale experimental well.展开更多
Heat transfer in an Eyring-Powell fluid that conducts electricity and flows past an exponentially growing sheet is considered.As the sheet is stretched in the x direction,the flow develops in the region with y>0.Th...Heat transfer in an Eyring-Powell fluid that conducts electricity and flows past an exponentially growing sheet is considered.As the sheet is stretched in the x direction,the flow develops in the region with y>0.The problem is tackled through a set of partial differential equations accounting for Magnetohydrodynamics(MHD),radiation and Joule heating effects,which are converted into a set of equivalent ordinary differential equations through a similarity transformation.The converted problem is solved in MATLAB in the framework a fourth order accurate integration scheme.It is found that the thermal relaxation period is inversely proportional to the thickness of the thermal boundary layer,whereas the Eckert-number displays the opposite trend.As this characteristic number grows,the temperature within the channel increases.展开更多
This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have...This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have mixed in the Maxwell fluid(base fluid).Magnetic field influence has been employed to channel in normal direction.Equations that are going to administer the fluid flow have been converted to dimension-free notations by using appropriate variables.Homotopy analysis method is used for the solution of the resultant equations.In this investigation it has pointed out that motion of fluid has declined with growth in magnetic effects,thin film thickness,and unsteadiness factor.Temperature of fluid has grown up with upsurge in Brownian motion,radiation factor,and thermophoresis effects,while it has declined with greater values of thermal Maxwell factor and thickness factor of the thin film.Concentration distribution has grown up with higher values of thermophoresis effects and has declined for augmentation in Brownian motion.展开更多
Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of d...Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of dry coal under gas adsorption equilibrium,gas flow and gas diffusion within wet coal under the generally non-equilibrium state are often ignored in the process of gas recovery.In this study,an improved apparent permeability model is proposed which accommodates the water and gas adsorption,stress dependence,water film thickness and gas flow regimes.In the process of modeling,the water adsorption is only affected by water content while the gas adsorption is time and water content dependent;based on poroelastic mechanics,the effective fracture aperture and effective pore radius are derived;and then the variation in water film thickness for different pore types under the effect of water content,stress and adsorption swelling are modeled;the flow regimes are considered based on Beskok’s model.Further,after validation with experimental data,the proposed model was applied to numerical simulations to investigate the evolution of permeability-related factors under the effect of different water contents.The gas flow in wet coal under the non-equilibrium state is explicitly revealed.展开更多
The shale oil reservoir is characterized by tight lithology and ultra-low permeability,and its efficient exploitation requires the technology of multi-stage and multi-cluster hydraulic fracturing in horizontal wells a...The shale oil reservoir is characterized by tight lithology and ultra-low permeability,and its efficient exploitation requires the technology of multi-stage and multi-cluster hydraulic fracturing in horizontal wells and shut-in imbibition.After multi-stage and multi-cluster hydraulic fracturing,a complex fracture network is formed,and a large volume of frac fluid is stored within the fracture network.During shut-in,imbibition and exchange between oil and water occurs under the action of the capillary force and osmotic pressure,and the formation pressure builds up in the shale reservoir.On basis of the characteristics of shale oil reservoir,we establish a model of imbibition during fracturing injection and shut-in by coupling oilewater two-phase flow and saline ion diffusion in the hydraulic fractures(HFs)network,natural fractures(NFs)and matrix system under the action of capillary force and osmotic pressure.The DFN method and the multiple continuum method are introduced to characterize fluid flow between the HF and the NF and that between the NF and the matrix respectively,which avoids the problem of a large amount of computation of seepage within the complex fracture.Then,the discrete fracture network(DFN)model and the multiple continuum model are solved with the finite element method,and it is verified in flow field,saturation field and concentration field that the models are accurate and reliable.We propose the imbibition exchange volume for quantitative evaluation of the imbibition degree and a method of calculating the imbibition exchange volume.Simulation of oil and water flow in the fracturing and shut-in stages is performed based on these models.It is found that imbibition in the shale reservoir is driven by mechanisms of pressure difference,capillary force and osmotic pressure.The osmotic pressure and capillary force only cause an increase in the imbibition rate and a reduction in the imbibition equilibrium time and do not lead to variation in the peak of imbibition exchange volume.The imbibition equilibrium time under the action of the capillary force and osmotic pressure is reduced from 150 to 45 d compared with that under the action of the pressure difference.If imbibition equilibrium is reached,low initial water saturation,strong rock compressibility,high formation water salinity and high matrix permeability enhance imbibition and exchange of oil and water in the reservoir.The leakoff volume of frac fluid is generally larger than the imbibition exchanged volume.Leakoff equilibrium occurs slightly earlier than imbibition equilibrium.The imbibition equilibrium time is mainly affected by reservoir permeability and NF density.The number of interconnected fractures mainly affects the frac fluid volume within the hydraulic fracture in the fracturing process.The stimulated reservoir volume(SRV)mainly affects frac fluid imbibition exchange in the shut-in process.展开更多
The hydrodynamic study of the liquid film around Taylor bubbles in slug flow has great significance for understanding parallel flow and interaction between Taylor bubbles.The prediction models for liquid film thicknes...The hydrodynamic study of the liquid film around Taylor bubbles in slug flow has great significance for understanding parallel flow and interaction between Taylor bubbles.The prediction models for liquid film thickness mainly focus on stagnant flow,and some of them remain inaccurate performance.However,in the industrial process,the slug flow essentially is co-current flow.Therefore,in this paper,the liquid film thickness is studied by theoretical analysis and experimental methods under two conditions of stagnant and co-current flow.Firstly,under the condition of stagnant flow,the present work is based on Batchelor's theory,and modifies Batchelor's liquid film thickness model,which effectively improves its prediction accuracy.Under the condition of co-current flow,the prediction model of average liquid film thickness in slug flow is established by force and motion analysis.Taylor bubble length is introduced into the model as an important parameter.Dynamic experiments were carried out in the pipe with an inner diameter of 20 mm.The liquid film thickness,Taylor bubble velocity and length were measured by distributed ultrasonic sensor and intrusive cross-correlation conductivity sensor.Comparing the predicted value of the model with the measured results,the relative error is controlled within 10%.展开更多
The study of a flexible body immersed in a flowing medium is one of the best way to find its aerodynamic shape.This Letter revisited the problem that was first studied by Alben et al.(Nature 420,479–481,2002).To dete...The study of a flexible body immersed in a flowing medium is one of the best way to find its aerodynamic shape.This Letter revisited the problem that was first studied by Alben et al.(Nature 420,479–481,2002).To determine the aerodynamic shape of the fibre,a simpler approach is proposed.A universal drag scaling law is obtained and the universality of the Alben-Shelley-Zhang scaling law is confirmed by using dimensional analysis.A complete Maple code is provided for finding aerodynamic shape of the fibre in the flowing medium.展开更多
The utilization of solar energy is essential to all living things since the beginning of time.In addition to being a constant source of energy,solar energy(SE)can also be used to generate heat and electricity.Recent t...The utilization of solar energy is essential to all living things since the beginning of time.In addition to being a constant source of energy,solar energy(SE)can also be used to generate heat and electricity.Recent technology enables to convert the solar energy into electricity by using thermal solar heat.Solar energy is perhaps the most easily accessible and plentiful source of sustainable energy.Copper-based nanofluid has been considered as a method to improve solar collector performance by absorbing incoming solar energy directly.The goal of this research is to explore theoretically the Agrawal axisymmetric flow induced by Cu-water nanofluid over a moving permeable disk caused by solar energy.Moreover,the impacts of Maxwell velocity and Smoluchowski temperature slip are incorporated to discuss the fine points of nanofluid flow and characteristics of heat transfer.The primary partial differential equations are transformed to similarity equations by employing similarity variables and then utilizing bvp4c to resolve the set of equations numerically.The current numerical approach can produce double solutions by providing suitable initial guesses.In addition,the results revealed that the impact of solar collector efficiency enhances significantly due to nanoparticle volume fraction.The suction parameter delays the boundary layer separation.Moreover,stability analysis is performed and is found that the upper solution is stable and physically trustworthy while the lower one is unstable.展开更多
Train timetables and operations are defined by the train running time in sections,dwell time at stations,and headways between trains.Accurate estimation of these factors is essential to decision-making for train delay...Train timetables and operations are defined by the train running time in sections,dwell time at stations,and headways between trains.Accurate estimation of these factors is essential to decision-making for train delay reduction,train dispatching,and station capacity estimation.In the present study,we aim to propose a train dwell time model based on an averaging mechanism and dynamic updating to address the challenges in the train dwell time prediction problem(e.g.,dynamics over time,heavy-tailed distribution of data,and spatiotemporal relationships of factors)for real-time train dispatching.The averaging mechanism in the present study is based on multiple state-of-the-art base predictors,enabling the proposed model to integrate the advantages of the base predictors in addressing the challenges in terms of data attributes and data distributions.Then,considering the influence of passenger flow on train dwell time,we use a dynamic updating method based on exponential smoothing to improve the performance of the proposed method by considering the real-time passenger amount fluctuations(e.g.,passenger soars in peak hours or passenger plunges during regular periods).We conduct experiments with the train operation data and passenger flow data from the Chinese high-speed railway line.The results show that due to the advantages over the base predictors,the averaging mechanism can more accurately predict the dwell time at stations than its counterparts for different prediction horizons regarding predictive errors and variances.Further,the experimental results show that dynamic smoothing can significantly improve the accuracy of the proposed model during passenger amount changes,i.e.,15.4%and 15.5%corresponding to the mean absolute error and root mean square error,respectively.Based on the proposed predictor,a feature importance analysis shows that the planned dwell time and arrival delay are the two most important factors to dwell time.However,planned time has positive influences,whereas arrival delay has negative influences.展开更多
In this paper,we consider the two-dimensional aggregation equation with the shear flow and time-space nonlocal attractive operator.Without the advection,the solution of the aggregation equation may blow up in finite t...In this paper,we consider the two-dimensional aggregation equation with the shear flow and time-space nonlocal attractive operator.Without the advection,the solution of the aggregation equation may blow up in finite time.We show that the shear flow can suppress the blow-up.展开更多
基金Supported by National Natural Science Foundation of China(52104049)Young Elite Scientist Sponsorship Program by BAST(BYESS2023262)Science Foundation of China University of Petroleum,Beijing(2462022BJRC004).
文摘Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.
基金funding support from the National Natural Science Foundation of China(Grant No.52204030)Youth Innovation and Technology Support Program for Higher Education Institutions of Shandong Province,China(Grant No.2022KJ070)the National Natural Science Foundation of China Enterprise Innovation and Development Joint Fund Project(Grant No.U19B6003).
文摘Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS responses associated with near-wellbore hydraulic fracture properties is still unclear.To address this knowledge gap,we use coupled wellbore-reservoir-geomechanics simulations to study measured strain-change behavior and infer hydraulic fracture characteristics.The crossflow among fractures is captured through explicit modeling of the transient wellbore flow.In addition,local grid refinement is applied to accurately capture strain changes along the fiber.A Base Case model was designed with four fractures of varying properties,simulating strain change signals when the production well is shut-in for 10 d after 240 d of production and reopened for 2 d.Strain-pressure plots for different fracture clusters were used to gain insights into inferring fracture properties using DSS data.When comparing the model with and without the wellbore,distinct strain change signals were observed,emphasizing the importance of incorporating the wellbore in FO-DSS modeling.The effects of fracture spacing and matrix permeability on strain change signals were thoroughly investigated.The results of our numerical study can improve the understanding of the relation between DSS signals and fracture hydraulic properties,thus maximizing the value of the dataset for fracture diagnostics and characterization.
基金the National Natural Science Foundation of China,China(Grant No.52227804,52174010)Strategic Cooperation Technology Projects of CNPC and CUPB,China(Grant No.ZLZX2020-01)+1 种基金Sinopec key laboratory of drilling completion and fracturing of shale oil and gas,China(Grant No.35800000-22-ZC0699-0004)the Key Projects of Scientific Research Plan in Colleges and Universities of Xinjiang Uygur Autonomous Region,China(Grant No.XJEDU20211028)。
文摘The backreaming operation plays a significant role in safe drilling for horizontal wellbores, while it may cause severe stuck pipe accidents. To lower the risk of the stuck pipe in backreaming operations, the mechanism of cuttings transport needs to be carefully investigated. In this research, a transient cuttings transport with multiple flow patterns model is developed to predict the evolution of cuttings transported in the annulus while backreaming. The established model can provide predictions of the distribution of cuttings bed along the wellbore considering the bulldozer effect caused by large-size drilling tools(LSDTs). The sensitivity analyses of the size of LSDTs, and backreaming operating parameters are conducted in Section 4. And a new theory is proposed to explain the mechanism of cuttings transport in the backreaming operation, in which both the bit and LSDTs have the “cleaning effect” and “plugging effect”.The results demonstrate that the cuttings bed in annuli is in a state of dynamic equilibrium, but the overall trend and the distribution pattern are obvious. First, larger diameters and longer drilling tools could lead to a higher risk of the stuck pipe. Second, we find that it is not the case that the higher flow rate is always better for hole cleaning, so three flow-rate intervals are discussed separately under the given conditions. When the “dangerous flow rate”(<33 L/s in Case 4) is employed, the cuttings bed completely blocks the borehole near the step surface and causes a stuck pipe directly. If the flow rate increases to the “low flow rate” interval(33-35 L/s in Case 4), a smaller flow rate instead facilitates borehole cleaning. If the flow rate is large enough to be in the “high flow rate” interval(>35 L/s in Case 4),the higher the flow rate, the better the cleaning effect of cuttings beds. Third, an interval of tripping velocity called “dangerous velocity” is proposed, in which the cuttings bed accumulation near the LSDTs is more serious than those of other tripping velocities. As long as the applied tripping velocity is not within the “dangerous velocity”(0.4-0.5 m/s in Case 5) interval in the backreaming operation, the risk of the stuck pipe can be controlled validly. Finally, through the factors analyses of the annular geometry,particle properties, and fluid properties in Section 5, it can be found that the “low flow rate”, “high flow rate” and “dangers flow rate” tend to decrease and the “dangerous velocity” tends to increase with the conditions more favorable for hole cleaning. This study has some guiding significance for risk prediction and parameter setting of the backreaming operation.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金the financial support from the Ministry of Education Malaysia under the Fundamental Research Grant Scheme(FRGS)scheme(20180110FRGS)。
文摘To address the issue of horizontal well production affected by the distribution of perforation density in the wellbore,a numerical model for simulating two-phase flow in a horizontal well is established under two perforation density distribution conditions(i.e.increasing the perforation density at inlet and outlet sections respectively).The simulation results are compared with experimental results to verify the reliability of the numerical simulation method.The behaviors of the total pressure drop,superficial velocity of air-water two-phase flow,void fraction,liquid film thickness,air production and liquid production that occur with various flow patterns are investigated under two perforation density distribution conditions based on the numerical model.The total pressure drop,superficial velocity of the mixture and void fraction increase with the air flow rate when the water flow rate is constant.The liquid film thickness decreases when the air flow rate increases.The liquid and air productions increase when the perforation density increases at the inlet section compared with increasing the perforation density at the outlet section of the perforated horizontal wellbore.It is noted that the air production increases with the air flow rate.Liquid production increases with the bubble flow and begins to decrease at the transition point of the slug-stratified flow,then increases through the stratified wave flow.The normalized liquid flux is higher when the perforation density increases at the inlet section,and increases with the radial air flow rate.
基金Supported by the National Natural Science Foundation of China(52374043)Key Program of the National Natural Science Foundation of China(52234003).
文摘Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.
基金SINOPEC's Scientific and Technological Research Project:Research on effective production strategies of Jurassic continental shale oil and gas(No.P21078-5).
文摘Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productivity and formulating proper development strategies.This study establishes a new well test interpretation model for fractured horizontal wells based on seepage mechanisms of shale reservoirs and proposes a method for identifying fracturing patterns based on the characteristic slopes of pressure buildup curves and curve combination patterns.The pressure buildup curve patterns are identified to represent three types of shale reservoirs in the Sichuan Basin,namely the moderately deep shale reservoirs with high pressure,deep shale reservoirs with ultra-high pressure,and moderately deep shale reservoirs with normal pressure.Based on this,the relationship between the typical pressure buildup curve patterns and the fracture network types are put forward.Fracturing effects of three types of shale gas reservoir are compared and analyzed.The results show that typical flow patterns of shale reservoirs include bilinear flow in primary and secondary fractures,linear flow in secondary fractures,bilinear flow in secondary fractures and matrix,and linear flow in matrix.The fracture network characteristics can be determined using the characteristic slopes of pressure buildup curves and curve combinations.The linear flow in early secondary fractures is increasingly distinct with an increase in primary fracture conductivity.Moreover,the bilinear flow in secondary fractures and matrix and the subsequent linear flow in the matrix occur as the propping and density of secondary fractures increase.The increase in the burial depth,in-situ stress,and stress difference corresponds to a decrease in the propping of primary fractures that expand along different directions in the shale gas wells in the Sichuan Basin.Four pressure buildup curve patterns exist in the Sichuan Basin and its periphery.The pattern of pressure buildup curves of shale reservoirs in the Yongchuan area can be described as 1/2/→1/4,indicating limited stimulated reservoir volume,poorly propped secondary fractures,and the forming of primary fractures that extend only to certain directions.The pressure buildup curves of shale reservoirs in the main block of the Fuling area show a pattern of 1/4/→1/2 or 1/2,indicating greater stimulated reservoir volume,well propped secondary fractures,and the forming of complex fracture networks.The pattern of pressure buildup curves of shale reservoirs in the Pingqiao area is 1/2/→1/4→/1/2,indicating a fracturing effect somewhere between that of the Fuling and Yongchuan areas.For reservoirs with normal pressure,it is difficult to determine fracture network characteristics from pressure buildup curves due to insufficient formation energy and limited liquid drainage.
基金supported by the financial support from the National Natural Science Foundation of China(52204084)Project funded by the China Postdoctoral Science Foundation(2021M700388).
文摘Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system.
文摘Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.
基金part of a key project carried out in 2009–2010financially supported by the National Key Sci-Tech Major Special Item (Grant No. 2009ZX05038)
文摘A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were developed based on the well liquid flow equation. FBHPs during the production were predicted by considering the effect of entrained liquid on gravitational gradients. Comparison of calculated BHPs by Cullender-Smith and proposed method was also studied. The results show that the proposed algorithm gives the desired accuracy of calculating BHPs in the low- productivity and low-pressure CBM wells. FBHP is resulted from the combined action of wellhead pressure, gas column pressure and fluid column pressure. Variation of kinetic energy term, compressibility and friction factors with depth increments and liquid holdup with velocity should be considered to simulate the real BHPs adequately. BHP is a function of depth of each column segment. The small errors of less than 1.5% between the calculated and measured values are obtained with each segment within 25 m. Adjusting BHPs can effectively increase production pressure drop, which is beneficial to CBM desorption and enhances reservoir productivity. The increment of pressure drop from 5.37 MPa2 to 8.66 MPa2 leads to an increase of CBM production from 3270 m3/d to 6700 m3/d and is attributed to a decrease in BHP from 2.25 MPa to 1.33 MPa.
基金The work was supported by the National Natural Science Foundation of China(No.51874045)National Natural Science Foundation-Youth Foundation(52104056)+2 种基金Department of Natural Resources of Guangdong Province(GDNRC[2021]56)Postdoctoral innovative talents support program in China(BX2021374)Scientific Research Program of Hubei Provincial Department of Education(T2021004).
文摘A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multiphase flow database with 3561 groups of data and developed a drift closure relationship with stable continuity and high adaptability.Second,a high-order numerical scheme with strong fault capture ability is constructed by effectively combining MUSCL technology,van Albada slope limiter and AUSMV numerical scheme.Finally,the energy equation is coupled into the AUSMV numerical scheme of the drift flow model in the form of finite difference.A transient non-isothermal wellbore multiphase flow model with wide applicability is formed by integrating the three technologies,and the effects of various factors on the calculation accuracy are studied.The accuracy of the simulator is verified by comparing the measurement results with the blowout experiment of a full-scale experimental well.
文摘Heat transfer in an Eyring-Powell fluid that conducts electricity and flows past an exponentially growing sheet is considered.As the sheet is stretched in the x direction,the flow develops in the region with y>0.The problem is tackled through a set of partial differential equations accounting for Magnetohydrodynamics(MHD),radiation and Joule heating effects,which are converted into a set of equivalent ordinary differential equations through a similarity transformation.The converted problem is solved in MATLAB in the framework a fourth order accurate integration scheme.It is found that the thermal relaxation period is inversely proportional to the thickness of the thermal boundary layer,whereas the Eckert-number displays the opposite trend.As this characteristic number grows,the temperature within the channel increases.
文摘This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have mixed in the Maxwell fluid(base fluid).Magnetic field influence has been employed to channel in normal direction.Equations that are going to administer the fluid flow have been converted to dimension-free notations by using appropriate variables.Homotopy analysis method is used for the solution of the resultant equations.In this investigation it has pointed out that motion of fluid has declined with growth in magnetic effects,thin film thickness,and unsteadiness factor.Temperature of fluid has grown up with upsurge in Brownian motion,radiation factor,and thermophoresis effects,while it has declined with greater values of thermal Maxwell factor and thickness factor of the thin film.Concentration distribution has grown up with higher values of thermophoresis effects and has declined for augmentation in Brownian motion.
基金the National Natural Science Foundation of China(No.52079077)the Natural Science Foundation of Shandong Province(No.ZR2021QE069).
文摘Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of dry coal under gas adsorption equilibrium,gas flow and gas diffusion within wet coal under the generally non-equilibrium state are often ignored in the process of gas recovery.In this study,an improved apparent permeability model is proposed which accommodates the water and gas adsorption,stress dependence,water film thickness and gas flow regimes.In the process of modeling,the water adsorption is only affected by water content while the gas adsorption is time and water content dependent;based on poroelastic mechanics,the effective fracture aperture and effective pore radius are derived;and then the variation in water film thickness for different pore types under the effect of water content,stress and adsorption swelling are modeled;the flow regimes are considered based on Beskok’s model.Further,after validation with experimental data,the proposed model was applied to numerical simulations to investigate the evolution of permeability-related factors under the effect of different water contents.The gas flow in wet coal under the non-equilibrium state is explicitly revealed.
基金the financial support of the National Key Research and Development Program of China(2020YFA0711804)the National Natural Science Foundation of China(Grant No.52074332)express their gratitude to project ZR2020YQ36 supported by Shandong Provincial Natural Science Foundation.
文摘The shale oil reservoir is characterized by tight lithology and ultra-low permeability,and its efficient exploitation requires the technology of multi-stage and multi-cluster hydraulic fracturing in horizontal wells and shut-in imbibition.After multi-stage and multi-cluster hydraulic fracturing,a complex fracture network is formed,and a large volume of frac fluid is stored within the fracture network.During shut-in,imbibition and exchange between oil and water occurs under the action of the capillary force and osmotic pressure,and the formation pressure builds up in the shale reservoir.On basis of the characteristics of shale oil reservoir,we establish a model of imbibition during fracturing injection and shut-in by coupling oilewater two-phase flow and saline ion diffusion in the hydraulic fractures(HFs)network,natural fractures(NFs)and matrix system under the action of capillary force and osmotic pressure.The DFN method and the multiple continuum method are introduced to characterize fluid flow between the HF and the NF and that between the NF and the matrix respectively,which avoids the problem of a large amount of computation of seepage within the complex fracture.Then,the discrete fracture network(DFN)model and the multiple continuum model are solved with the finite element method,and it is verified in flow field,saturation field and concentration field that the models are accurate and reliable.We propose the imbibition exchange volume for quantitative evaluation of the imbibition degree and a method of calculating the imbibition exchange volume.Simulation of oil and water flow in the fracturing and shut-in stages is performed based on these models.It is found that imbibition in the shale reservoir is driven by mechanisms of pressure difference,capillary force and osmotic pressure.The osmotic pressure and capillary force only cause an increase in the imbibition rate and a reduction in the imbibition equilibrium time and do not lead to variation in the peak of imbibition exchange volume.The imbibition equilibrium time under the action of the capillary force and osmotic pressure is reduced from 150 to 45 d compared with that under the action of the pressure difference.If imbibition equilibrium is reached,low initial water saturation,strong rock compressibility,high formation water salinity and high matrix permeability enhance imbibition and exchange of oil and water in the reservoir.The leakoff volume of frac fluid is generally larger than the imbibition exchanged volume.Leakoff equilibrium occurs slightly earlier than imbibition equilibrium.The imbibition equilibrium time is mainly affected by reservoir permeability and NF density.The number of interconnected fractures mainly affects the frac fluid volume within the hydraulic fracture in the fracturing process.The stimulated reservoir volume(SRV)mainly affects frac fluid imbibition exchange in the shut-in process.
基金supported by National Natural Science Foundation of China(42074142,51527805)。
文摘The hydrodynamic study of the liquid film around Taylor bubbles in slug flow has great significance for understanding parallel flow and interaction between Taylor bubbles.The prediction models for liquid film thickness mainly focus on stagnant flow,and some of them remain inaccurate performance.However,in the industrial process,the slug flow essentially is co-current flow.Therefore,in this paper,the liquid film thickness is studied by theoretical analysis and experimental methods under two conditions of stagnant and co-current flow.Firstly,under the condition of stagnant flow,the present work is based on Batchelor's theory,and modifies Batchelor's liquid film thickness model,which effectively improves its prediction accuracy.Under the condition of co-current flow,the prediction model of average liquid film thickness in slug flow is established by force and motion analysis.Taylor bubble length is introduced into the model as an important parameter.Dynamic experiments were carried out in the pipe with an inner diameter of 20 mm.The liquid film thickness,Taylor bubble velocity and length were measured by distributed ultrasonic sensor and intrusive cross-correlation conductivity sensor.Comparing the predicted value of the model with the measured results,the relative error is controlled within 10%.
基金supported by Xi’an University of Architecture and Technology(Grant No.002/2040221134).
文摘The study of a flexible body immersed in a flowing medium is one of the best way to find its aerodynamic shape.This Letter revisited the problem that was first studied by Alben et al.(Nature 420,479–481,2002).To determine the aerodynamic shape of the fibre,a simpler approach is proposed.A universal drag scaling law is obtained and the universality of the Alben-Shelley-Zhang scaling law is confirmed by using dimensional analysis.A complete Maple code is provided for finding aerodynamic shape of the fibre in the flowing medium.
基金supported by Researchers Supporting Project No.(RSP-2021/33),King Saud University,Riyadh,Saudi Arabia.
文摘The utilization of solar energy is essential to all living things since the beginning of time.In addition to being a constant source of energy,solar energy(SE)can also be used to generate heat and electricity.Recent technology enables to convert the solar energy into electricity by using thermal solar heat.Solar energy is perhaps the most easily accessible and plentiful source of sustainable energy.Copper-based nanofluid has been considered as a method to improve solar collector performance by absorbing incoming solar energy directly.The goal of this research is to explore theoretically the Agrawal axisymmetric flow induced by Cu-water nanofluid over a moving permeable disk caused by solar energy.Moreover,the impacts of Maxwell velocity and Smoluchowski temperature slip are incorporated to discuss the fine points of nanofluid flow and characteristics of heat transfer.The primary partial differential equations are transformed to similarity equations by employing similarity variables and then utilizing bvp4c to resolve the set of equations numerically.The current numerical approach can produce double solutions by providing suitable initial guesses.In addition,the results revealed that the impact of solar collector efficiency enhances significantly due to nanoparticle volume fraction.The suction parameter delays the boundary layer separation.Moreover,stability analysis is performed and is found that the upper solution is stable and physically trustworthy while the lower one is unstable.
基金This work was supported by the National Natural Science Foundation of China(No.71871188).
文摘Train timetables and operations are defined by the train running time in sections,dwell time at stations,and headways between trains.Accurate estimation of these factors is essential to decision-making for train delay reduction,train dispatching,and station capacity estimation.In the present study,we aim to propose a train dwell time model based on an averaging mechanism and dynamic updating to address the challenges in the train dwell time prediction problem(e.g.,dynamics over time,heavy-tailed distribution of data,and spatiotemporal relationships of factors)for real-time train dispatching.The averaging mechanism in the present study is based on multiple state-of-the-art base predictors,enabling the proposed model to integrate the advantages of the base predictors in addressing the challenges in terms of data attributes and data distributions.Then,considering the influence of passenger flow on train dwell time,we use a dynamic updating method based on exponential smoothing to improve the performance of the proposed method by considering the real-time passenger amount fluctuations(e.g.,passenger soars in peak hours or passenger plunges during regular periods).We conduct experiments with the train operation data and passenger flow data from the Chinese high-speed railway line.The results show that due to the advantages over the base predictors,the averaging mechanism can more accurately predict the dwell time at stations than its counterparts for different prediction horizons regarding predictive errors and variances.Further,the experimental results show that dynamic smoothing can significantly improve the accuracy of the proposed model during passenger amount changes,i.e.,15.4%and 15.5%corresponding to the mean absolute error and root mean square error,respectively.Based on the proposed predictor,a feature importance analysis shows that the planned dwell time and arrival delay are the two most important factors to dwell time.However,planned time has positive influences,whereas arrival delay has negative influences.
基金supported by Shanghai Science and Technology Innovation Action Plan(Grant No.21JC1403600)The work of the second author was partially supported by the National Natural Science Foundation of China(Grant No.11831011)Shanghai Science and Technology Innovation Action Plan(Grant No.21JC1403600).
文摘In this paper,we consider the two-dimensional aggregation equation with the shear flow and time-space nonlocal attractive operator.Without the advection,the solution of the aggregation equation may blow up in finite time.We show that the shear flow can suppress the blow-up.