期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The analysis of frequency-dependent characteristics for fluid detection: a physical model experiment 被引量:2
1
作者 陈双全 李向阳 王尚旭 《Applied Geophysics》 SCIE CSCD 2012年第2期195-206,235,236,共14页
According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a hi... According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a high-frequency bright spot as the amplitude energy shifts. However, it is a low-frequency shadow for the Class III AVO reservoirs saturated with hydrocarbons. In this paper, we verified the high-frequency bright spot results of Chapman for the Class I AVO response using the frequency-dependent analysis of a physical model dataset. The physical model is designed as inter-bedded thin sand and shale based on real field geology parameters. We observed two datasets using fixed offset and 2D geometry with different fluid- saturated conditions. Spectral and time-frequency analyses methods are applied to the seismic datasets to describe the response characteristics for gas-, water-, and oil-saturation. The results of physical model dataset processing and analysis indicate that reflection wave tuning and fluid-related dispersion are the main seismic response characteristic mechanisms. Additionally, the gas saturation model can be distinguished from water and oil saturation for Class I AVO utilizing the frequency-dependent abnormal characteristic. The frequency-dependent characteristic analysis of the physical model dataset verified the different spectral response characteristics corresponding to the different fluid-saturated models. Therefore, by careful analysis of real field seismic data, we can obtain the abnormal spectral characteristics induced by the fluid variation and implement fluid detection using seismic data directly. 展开更多
关键词 Frequency-dependent characteristic fluid detection time-frequency analysis attenuation and dispersion physical model
下载PDF
Application of seismic anisotropy fluid detection technology in the Ken 71 well block of Shengli Oilfield 被引量:2
2
作者 毕丽飞 钱忠平 +3 位作者 张峰 陈晓燕 韩世春 Mark Chapman 《Applied Geophysics》 SCIE CSCD 2011年第2期117-124,176,177,共10页
On the basis of Chapman's(2003) model,as the seismic wave incidences angles vary from 0° to 45° while propagating in anisotropic media(HTI),the slow S-wave will sufferred by serious attenuation and disp... On the basis of Chapman's(2003) model,as the seismic wave incidences angles vary from 0° to 45° while propagating in anisotropic media(HTI),the slow S-wave will sufferred by serious attenuation and dispersion and is sensitive to fluid viscosity but the P-and fast S-waves don't.For slow S waves propagating normal to fractures,the amplitudes are strongly affected by pore fluid.So,the slow S-wave can be used to detect fractured reservoir fluid information when the P-wave response is insensitive to the fluid.In this paper,3D3C seismic data from the Ken 71 area of Shengli Oilfield are processed and analyzed.The travel time and amplitude anomalies of slow S-waves are detected and correlated with well log data.The S-wave splitting in a water-bearing zone is higher than in an oil-bearing zone.Thus,the slow S-wave amplitude change is more significant in water-bearing zones than in oil-bearing zones. 展开更多
关键词 ANISOTROPY slow S-wave fluid detection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部