期刊文献+
共找到1,087篇文章
< 1 2 55 >
每页显示 20 50 100
A corrected particle method with high-order Taylor expansion for solving the viscoelastic fluid flow 被引量:2
1
作者 T. Jiang J. L. Ren +1 位作者 W. G. Lu B. Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第1期20-39,共20页
In this paper, a corrected particle method based on the smoothed particle hydrodynamics (SPH) method with high-order Taylor expansion (CSPH-HT) for solving the viscoelastic flow is proposed and investigated. The valid... In this paper, a corrected particle method based on the smoothed particle hydrodynamics (SPH) method with high-order Taylor expansion (CSPH-HT) for solving the viscoelastic flow is proposed and investigated. The validity and merits of the CSPH-HT method are first tested by solving the nonlinear high order Kuramoto-Sivishinsky equation and simulating the drop stretching, respectively. Then the flow behaviors behind two stationary tangential cylinders of polymer melt, which have been received little attention, are investigated by the CSPH-HT method. Finally, the CSPH-HT method is extended to the simulation of the filling process of the viscoelastic fluid. The numerical results show that the CSPH-HT method possesses higher accuracy and stability than other corrected SPH methods and is more reliable than other corrected SPH methods. 展开更多
关键词 Smoothed particle hydrodynamics High-order Taylor expansion Viscoelastic fluid Extended pom-pom model
下载PDF
Effects of Al particles and thin layer on thermal expansion and conductivity of Al-Y_2Mo_3O_(12) cermets 被引量:1
2
作者 刘献省 葛向红 +1 位作者 梁二军 张伟风 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期498-502,共5页
Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger ... Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface. 展开更多
关键词 negative thermal expansion low thermal expansion conductivity composite
下载PDF
Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil-water two-phase flow
3
作者 Yang Wang Jia Zhang +2 位作者 Shi-Long Yang Ze-Xuan Xu Shi-Qing Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期343-351,共9页
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni... Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves. 展开更多
关键词 Polymer flooding Non-Newtonian fluid Non-uniform fracture conductivity Two-phase flow Pressure transient analysis
下载PDF
Conductive property of Zr_(0.1)Fe_(0.9)V_(1.1)Mo_(0.9)O_7 with low thermal expansion
4
作者 何小可 戚恒 +3 位作者 徐启 刘献省 许磊 袁保合 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第5期244-248,共5页
Low thermal expansion materials are mostly ceramics with low conductive property, which limits their applications in electronic devices. The poor conductive property of ceramic ZrV_2 O_7 could be improved by bi-substi... Low thermal expansion materials are mostly ceramics with low conductive property, which limits their applications in electronic devices. The poor conductive property of ceramic ZrV_2 O_7 could be improved by bi-substitution of Fe and Mo for Zr and V, accompanied with low thermal expansion. Zr_(0.1) Fe_(0.9) V_(1.1 )Mo_(0.9 )O_7 has electrical conductivity of 8.2× 10^(-5) S/cm and 9.41× 10^(-4) S/cm at 291 K and 623 K, respectively. From 291 K to 413 K, thermal excitation leads to the increase of carrier concentration, which causes the rapid decrease of resistance. At 413–533 K, the conductivity is unchanged due to high scattering probability and a slowing increase of carrier concentration. The conductivity rapidly increases again from533 K to 623 K due to the intrinsic thermal excitation. The thermal expansion coefficient of Zr_(0.1) Fe_(0.9) V_(1.1 )Mo_(0.9 )O_7 is as low as 0.72× 10^(-6 )K^(-1) at 140–700 K from the dilatometer measurement. These properties suggest that Zr_(0.1) Fe_(0.9) V_(1.1 )Mo_(0.9 )O_7 has attractive application in electronic components. 展开更多
关键词 low THERMAL expansion conductIVITY THERMAL EXCITATION electric IMPEDANCE
下载PDF
Structure,Electrical Conducting and Thermal Expansion Properties of Ln_(0.6)Sr_(0.4)Co_(0.8)Fe_(0.2)O_3(Ln=La,Pr,Nd,Sm)Ceramics
5
作者 徐庆 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第3期386-390,共5页
Ln0.6Sr0.4Co0.2Fe0.2O3 (Ln=La, Pr, Nd, Sm) perovskite-type complex oxides were synthesized using a glycine-nitrate process, and the structure, electrical conducting and thermal expansion properties of the resulting ... Ln0.6Sr0.4Co0.2Fe0.2O3 (Ln=La, Pr, Nd, Sm) perovskite-type complex oxides were synthesized using a glycine-nitrate process, and the structure, electrical conducting and thermal expansion properties of the resulting ceramics were examined with regard to the nature of the lanthanide cations. The results indicated that the La, Pr and Nd specimens had a rhombohedral symmetry, while an orthorhombic structure was determined for the Sm specimen. The pseudo-cubic lattice constant decreased with smaller lanthanide cations. It was found that the electrical conducting properties declined with decreasing lanthanide cation size. Fortunately, all the compositions remained rather high electrical conductivities exceeding 650 Ω ^-1m·cm^-1 in the intermediate temperature range (600-800 ℃). An appreciable thermal expansion increase at high temperatures was detected for all the compositions. Decreasing the size of the lanthanide cations resulted in an increase of thermal expansion. With respect to the high electrical conductivities, the Ln0.6Sr0.4Co0.8Fe0.2O3 oxides are considered to be acceptable as mixed conducting component in composite cathode designs together with doped ceria electrolytes. 展开更多
关键词 electrical conduction Perovskites thermal expansion
下载PDF
Hierarchical Expansion Method in the Solution of the Navier-Stokes Equations for Incompressible Fluids in Laminar Two-Dimensional Flow
6
作者 Gaianê Sabundjian +1 位作者 Thadeu das Neves Conti Eduardo Lobo Lustosa Cabral 《Energy and Power Engineering》 2018年第1期1-9,共9页
Among the several methods used to solve the Navier-Stokes equations Hierarchical Expansion Method has demonstrated satisfactory results. This work aimed to apply the expansion of the variables in hierarchical function... Among the several methods used to solve the Navier-Stokes equations Hierarchical Expansion Method has demonstrated satisfactory results. This work aimed to apply the expansion of the variables in hierarchical functions for the solution of the Navier-Stokes equations for incompressible fluids in two dimensions in laminar flow. This method is based on the finite element method. The expansion functions in this study were based on Legendre polynomials, adjusted in the rectangular elements in such a way that corner, side and area functions were defined. The order of the expansion functions associated with the sides and with the area of the elements is adjusted to the necessary or desired degree. This method is denominated by Hierarchical Expansion Method. In order to validate the proposed numeric method three well-known problems of the literature in two dimensions were analyzed;however, for this paper only one problem was presented. The results demonstrated that method was able to provide precise results. From the results obtained in this paper it is possible to conclude that the hierarchical expansion method can be effective for the solution of fluid dynamic problems that involve incompressible fluids. 展开更多
关键词 Finite Element PETROV-GALERKIN Formulation NAVIER-STOKES Equations HIERARCHICAL expansion Functions INCOMPRESSIBLE fluid
下载PDF
Heat transfer analysis in peristaltic flow of MHD Jeffrey fluid with variable thermal conductivity 被引量:3
7
作者 Q.HUSSAIN S.ASGHAR +1 位作者 T.HAYAT A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第4期499-516,共18页
The effect of an inclined magnetic field in the peristaltic flow of a Jeffrey fluid with variable thermal conductivity is discussed. The temperature dependent thermal conductivity of fluid in an asymmetric channel is ... The effect of an inclined magnetic field in the peristaltic flow of a Jeffrey fluid with variable thermal conductivity is discussed. The temperature dependent thermal conductivity of fluid in an asymmetric channel is taken into account. A dimensionless nonlinear system subject to a long wavelength and a low Reynolds number is solved. The explicit expressions of the stream function, the axial velocity, the pressure gradient, and the temperature are obtained. The effects of all physical parameters on peristaltic transport and heat transfer characteristics are observed from graphical illustrations. The behaviors of θ∈ [0, π/2] and θ∈ [π/2, π] on fluid flow and heat transfer are found to be opposite. Further, the size of trapped bolus is greater for the case of the inclined magnetic field (θ≠ π/2) than that for the case of the transverse magnetic field (θ = π/2). The heat transfer coefficient decreases when the constant thermal conductivity (Newtonian) fluid is changed to the variable thermal conductivity (Jeffrey) fluid. 展开更多
关键词 inclined magnetic field variable thermal conductivity Jeffrey fluid peri-staltic transport heat transfer
下载PDF
Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation 被引量:2
8
作者 T. HAYAT S. A. SHEHZAD A. ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期823-832,共10页
This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed fo... This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed for the velocity and temperature fields. Graphs for the velocity and temperature are plotted to examine the behaviors with different parameters. Numerical values of the local Nusselt number are presented and discussed. The present results are compared with the existing limiting solutions, showing good agreement with each other. 展开更多
关键词 three-dimensional flow variable thermal conductivity thermal radiation Jeffrey fluid
下载PDF
Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method 被引量:4
9
作者 Farshad Samadpour Ghader Faraji Armin Siahsarani 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第5期669-677,共9页
Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HC... Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HCEE process at elevated temperatures, high-pressure molten linear low-density polyethylene(LLDPE) was used as a fluid to eliminate frictional forces. To study the capability of the process,AM60 magnesium rods were processed and the properties were investigated. The mechanical properties were found to improve significantly after the HCEE process. The yield and ultimate strengths increased from initial values of 138 and 221 MPa to 212 and 317 MPa, respectively.Moreover, the elongation was enhanced due to the refined grains and the existence of high hydrostatic pressure. Furthermore, the microhardness was increased from HV 55.0 to HV 72.5. The microstructural analysis revealed that ultrafine-grained structure could be produced by the HCEE process. Moreover, the size of the particles decreased, and these particles thoroughly scattered between the grains. Finite element analysis showed that the HCEE was independent of the length of the sample, which makes the process suitable for industrial applications. 展开更多
关键词 high-pressure fluid ELEVATED temperature severe plastic deformation HYDROSTATIC CYCLIC expansion EXTRUSION mechanical properties magnesium alloy
下载PDF
Flow of variable thermal conductivity fluid due to inclined stretching cylinder with viscous dissipation and thermal radiation 被引量:1
10
作者 T.HAYAT S.ASAD A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第6期717-728,共12页
The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effe... The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effects. The temperature dependent thermal conductivity of the Casson fluid is considered. The relevant equations are first simplified under usual boundary layer assumptions, and then transformed into ordinary differential equations by suitable transformations. The transformed ordinary differential equations are computed for the series solutions of velocity and temperature. A convergence analysis is shown explicitly. Velocity and temperature fields are discussed for different physical parameters by graphs and numerical values. It is found that the velocity decreases with the increase in the angle of inclination while increases with the increase in the mixed convection parameter. The enhancement in the thermal conductivity and radiation effects corresponds to a higher fluid temperature. It is also found that heat transfer is more pronounced in a cylinder when it is compared with a flat plate. The thermal boundary layer thickness increases with the increase in the Eckert number. The radiation and variable thermal conductivity decreases the heat transfer rate at the surface. 展开更多
关键词 Casson fluid thermal radiation variable thermal conductivity inclined stretching cylinder
下载PDF
Vertical Alignment of Anisotropic Fillers Assisted by Expansion Flow in Polymer Composites 被引量:2
11
作者 Hongyu Niu Haichang Guo +3 位作者 Lei Kang Liucheng Ren Ruicong Lv Shulin Bai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第9期257-271,共15页
Orientation control of anisotropic one-dimensional(1D)and two-dimensional(2D)materials in solutions is of great importance in many fields ranging from structural materials design,the thermal management,to energy stora... Orientation control of anisotropic one-dimensional(1D)and two-dimensional(2D)materials in solutions is of great importance in many fields ranging from structural materials design,the thermal management,to energy storage.Achieving fine control of vertical alignment of anisotropic fillers(such as graphene,boron nitride(BN),and carbon fiber)remains challenging.This work presents a universal and scalable method for constructing vertically aligned structures of anisotropic fillers in composites assisted by the expansion flow(using2D BN platelets as a proof-of-concept).BN platelets in the silicone gel strip are oriented in a curved shape that includes vertical alignment in the central area and horizontal alignment close to strip surfaces.Due to the vertical orientation of BN in the central area of strips,a throughplane thermal conductivity as high as 5.65 W m^(-1) K^(-1) was obtained,which can be further improved to 6.54 W m^(-1) K^(-1) by combining BN and pitch-based carbon fibers.The expansion-flow-assisted alignment can be extended to the manufacture of a variety of polymer composites filled with 1D and 2D materials,which can find wide applications in batteries,electronics,and energy storage devices. 展开更多
关键词 Boron nitride(BN) SILICONE expansion flow Vertical alignment Through-plane thermal conductivity
下载PDF
Analysis of Glutamic Acid in Cerebrospinal Fluid by Capillary Electrophoresis with High Frequency Conductivity Detection 被引量:1
12
作者 HalYunZHAI JunMeiWANG +3 位作者 XiaoLiYAO XueCaiTAN PeiXiangCAI ZuanGuangCHEN 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第2期225-228,共4页
关键词 Capillary electrophoresis high frequency conductivity detection contactless conducti-vity detection glutamic acid cerebrospinal fluid.
下载PDF
Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver–palladium alloy composites 被引量:3
13
作者 Hemant Pal Vimal Sharma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第11期1132-1140,共9页
The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were ... The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver–palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion(CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%?40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver–palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element. 展开更多
关键词 metal matrix composites carbon nanotubes mechanical properties coefficient of thermal expansion electrical conductivity
下载PDF
Theoretical solution of transient heat conduction problem in one-dimensional double-layer composite medium 被引量:2
14
作者 周龙 白敏丽 +1 位作者 吕继组 崔文政 《Journal of Central South University》 SCIE EI CAS 2010年第6期1403-1408,共6页
To make heat conduction equation embody the essence of physical phenomenon under study,dimensionless factors were introduced and the transient heat conduction equation and its boundary conditions were transformed to d... To make heat conduction equation embody the essence of physical phenomenon under study,dimensionless factors were introduced and the transient heat conduction equation and its boundary conditions were transformed to dimensionless forms.Then,a theoretical solution model of transient heat conduction problem in one-dimensional double-layer composite medium was built utilizing the natural eigenfunction expansion method.In order to verify the validity of the model,the results of the above theoretical solution were compared with those of finite element method.The results by the two methods are in a good agreement.The maximum errors by the two methods appear when τ(τ is nondimensional time) equals 0.1 near the boundaries of ξ =1(ξ is nondimensional space coordinate) and ξ =4.As τ increases,the error decreases gradually,and when τ =5 the results of both solutions have almost no change with the variation of coordinate ξ. 展开更多
关键词 合成媒介 短暂的热传导 理论答案 自然特徵函数扩大方法
下载PDF
Carreau fluid flow due to nonlinearly stretching sheet with thermal radiation, heat flux, and variable conductivity
15
作者 A.M.MEGAHED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第11期1615-1624,共10页
A sophisticated theoretical and mathematical model is proposed.It is verified that this model can estimate and monitor the detailed behavior for the steady Carreau fluid flow past a nonlinear stretching surface and th... A sophisticated theoretical and mathematical model is proposed.It is verified that this model can estimate and monitor the detailed behavior for the steady Carreau fluid flow past a nonlinear stretching surface and the predicted phenomena due to the presence of heat flux,thermal radiation,and viscous dissipation.Despite the fact that some properties of the fluid do not depend on the temperature,the fluid thermal conductivity is assumed to depend on the temperature.Based on accelerating the fluid elements,some of the kinetic energy for the fluid can be turned to the internal heating energy in the form of viscous dissipation phenomena.The contribution in this study is that a similar solution is obtained,in spite of the high nonlinearity of the Carreau model,especially,with the heat flux,variable conductivity,and viscous dissipation phenomena.Some of the major significant findings of this study can be observed from the reduction in the fluid velocity with enhancing the Weissenberg number.Likewise,the increase in the sheet temperature is noted with increasing the Eckert number while the reverse behavior is observed for increasing both the radiation parameter and the conductivity parameter.Finally,the accuracy and trust in the proposed numerical method are validated after benchmarking for our data onto the earlier results. 展开更多
关键词 Carreau fluid nonlinearly STRETCHING sheet VARIABLE heat FLUX VARIABLE conductIVITY
下载PDF
SOLUTION OF THE RAYLEIGH PROBLEM FOR A POWER-LAW NON-NEWTONIAN CONDUCTING FLUID VIA GROUP METHOD
16
作者 Mina B.Abd-el-Malek Nagwa A.Badran Hossam S.Hassan 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第6期639-646,共8页
An investigation is made of the magnetic Rayleigh problem where a semi_infinite plate is given an impulsive motion and thereafter moves with constant velocity in a non_Newtonian power law fluid of infinite extent. The... An investigation is made of the magnetic Rayleigh problem where a semi_infinite plate is given an impulsive motion and thereafter moves with constant velocity in a non_Newtonian power law fluid of infinite extent. The solution of this highly non_linear problem is obtained by means of the transformation group theoretic approach. The one_parameter group transformation reduces the number of independent variables by one and the governing partial differential equation with the boundary conditions reduce to an ordinary differential equation with the appropriate boundary conditions. Effect of the some parameters on the velocity u(y,t) has been studied and the results are plotted. 展开更多
关键词 Rayleigh problem group method non_linearity conducting fluid non_Newtonian power law fluid
下载PDF
Effect of thermal conductivity on heat transfer for a power-law non-Newtonian fluid over a continuous stretched surface with various injection parameters
17
作者 F.A.SALAMA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第8期963-968,共6页
The two-dimensional non-Newtonian steady flow on a power-law stretched surface with suction or injection is studied. Thermal conductivity is assumed to vary as a linear function of temperature. The transformed governi... The two-dimensional non-Newtonian steady flow on a power-law stretched surface with suction or injection is studied. Thermal conductivity is assumed to vary as a linear function of temperature. The transformed governing equations in the present study are solved numerically using the Runge-Kutta method. Through a comparison, results for a special case of the problem show excellent agreement with those in a previous work. Two cases are considered, one corresponding to a cooled surface temperature and the other to a uniform surface temperature. Numerical results show that the thermal conductivity variation parameter, the injection parameter, and the power-law index have significant influences on the temperature profiles and the Nusselt number. 展开更多
关键词 non-Newtonian fluid thermal conductivity power-law fluid heat transfer
下载PDF
Hydraulic and volume change behaviors of compacted highly expansive soil under cyclic wetting and drying 被引量:2
18
作者 Mohamed Farid Abbas Abdullah Ali Shaker Mosleh A.Al-Shamrani 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期486-499,共14页
The wide engineered application of compacted expansive soils necessitates understanding their behavior under field conditions.The results of this study demonstrate how seasonal climatic variation and stress and bounda... The wide engineered application of compacted expansive soils necessitates understanding their behavior under field conditions.The results of this study demonstrate how seasonal climatic variation and stress and boundary conditions individually or collectively influence the hydraulic and volume change behavior of compacted highly expansive soils.The cyclic wetting and drying(CWD)process was applied for two boundary conditions,i.e.constant stress(CS)and constant volume(CV),and for a wide range of axial stress states.The adopted CWD process affected the hydraulic and volume change behaviors of expansive soils,with the first cycle of wetting and drying being the most effective.The CWD process under CS conditions resulted in shrinkage accumulation and reduction in saturated hydraulic conductivity(k sat).On the other hand,CWD under CV conditions caused a reduction of swell pressure while has almost no impact on k sat.An elastic response to CWD was achieved after the third cycle for saturated hydraulic conductivity(k sat),the third to fourth cycle for the volume change potential under the CV conditions,and the fourth to fifth cycle for the volume change potential under the CS conditions.Finally,both swell pressure(s s)and saturated hydraulic conductivity(k sat)are not fundamental parameters of the expansive soil but rather depend on stress,boundary and wetting conditions. 展开更多
关键词 expansive soils Hydraulic conductivity Volume change potential Cyclic wetting and drying(CWD) Swell pressure
下载PDF
A New Modified Conductivity Model for Prediction of Shear Yield Stress of Electrorheological Fluids Based on Face-center Square Structure
19
作者 谭柱华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第4期91-94,共4页
A new modified conductivity model was established to predict the shear yield stress of electrorheological fluids (ERF). By using a cell equivalent method, the present model can deal with the face-center square structu... A new modified conductivity model was established to predict the shear yield stress of electrorheological fluids (ERF). By using a cell equivalent method, the present model can deal with the face-center square structure of ERF. Combining the scheme of the classical conductivity model for the single-chain structure, a new formula for the prediction of the shear yield stress of ERF was set up. The influences of the separation distance of the particles, the volume fraction of the particles and the applied electric field on the shear yield stress were investigated. 展开更多
关键词 electrorheological fluids face-center square structure equivalent cell conductivity model shear yield stress
下载PDF
Flow of couple stress fluid with variable thermal conductivity
20
作者 S.ASAD A.ALSAEDI T.HAYAT 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第3期315-324,共10页
The steady flow and heat transfer of a couple stress fluid due to an inclined stretching cylinder are analyzed. The thermal conductivity is assumed to be temperature dependent. The governing equations for the flow and... The steady flow and heat transfer of a couple stress fluid due to an inclined stretching cylinder are analyzed. The thermal conductivity is assumed to be temperature dependent. The governing equations for the flow and heat transfer are transformed into ordinary differential equations. Series solutions of the resulting problem are computed. The effects of various interested parameters, e.g., the couple stress parameter, the angle of inclination, the mixed convection parameter, the Prandtl number, the Reynolds number, the radiation parameter, and the variable thermal conductivity parameter, are illustrated. The skin friction coefficient and the local Nusselt number are computed and analyzed. It is observed that the heat transfer rate at the surface increases while the velocity and the shear stress decrease when the couple stress parameter and the Reynolds number increase. The temperature increases when the Reynolds number increases. 展开更多
关键词 couple stress fluid thermal radiation variable thermal conductivity
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部