Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate ...Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.展开更多
The present research investigates the influence of sheath solvent’s flow rate on the quality of electrospun ethyl cellulose (EC) nanofibers using a modified coaxial process. With 24 w/v % EC in ethanol as electrospin...The present research investigates the influence of sheath solvent’s flow rate on the quality of electrospun ethyl cellulose (EC) nanofibers using a modified coaxial process. With 24 w/v % EC in ethanol as electrospinnable core fluid and ethanol as sheath fluid, EC nanofibers generated under different sheath flow rates were generated from the modified processes. FESEM observations demonstrate that the modified process is effective in preventing the clogging of spinneret for a smooth electrospinning. The key for the modified coaxial process is the reasonable selection of a sheath flow rate matching the drawing process of core EC fluid during the electrpospinning. The EC nanofibers’ diameters (D, nm) could be manipulated through the sheath-to-core flow rate ratio (f) as D = 819-1651f (R= 0.9754) within a suitable range of 0 to 0.25. The present paper provides useful data for the implementation of the modified coaxial process controllably to obtain polymer nanofibers with high quality.展开更多
The research of different kinds of permeable non-Newtonian fluid flow is increasing day by day owing to the development of science,technology and production modes.It is most common to use power rate equation to descri...The research of different kinds of permeable non-Newtonian fluid flow is increasing day by day owing to the development of science,technology and production modes.It is most common to use power rate equation to describe such flows.However,this equation is nonlinear and very difficult to derive explicit exact analytical solutions.Generally,people can only derive approximate solutions with numerical methods.Recently,an advanced separating variables method which can derive exact analytical solutions easier is developed by Academician CAI Ruixian(the method of separating variables with addition).It is assumed that the unknown variable may be indicated as the sum of one-dimensional functions rather than the product in the common method of separating variables.Such method is used to solve the radial permeable power rate flow unsteady nonlinear equations on account of making the process simple.Four concise(no special functions and infinite series) exact analytical solutions is derived with the new method about this flow to develop the theory of non-Newtonian permeable fluid,which are exponential solution,two-dimensional function with time and radius,logarithmic solution,and double logarithmic solution,respectively.In addition,the method of separating variables with addition is developed and applied instead of the conventional multiplication one.It is proven to be promising and encouraging by the deducing.The solutions yielded will be valuable to the theory of the permeable power rate flow and can be used as standard solutions to check numerical methods and their differencing schemes,grid generation ways,etc.They also can be used to verify the accuracy,convergency and stability of the numerical solutions and to develop the numerical computational approaches.展开更多
A T-junction is a fundamental fluid element prevalent in pipe networks of water supplies and power plants. In the present study, a double T-junction was investigated for flow instability and fluid vibration. Both axi-...A T-junction is a fundamental fluid element prevalent in pipe networks of water supplies and power plants. In the present study, a double T-junction was investigated for flow instability and fluid vibration. Both axi-aligned and skewed double T-junctions are examined from viewpoint of flow instability. With single-phase flow in an open-ended double T-junction, fluid vibration is induced in both side branches because of a high shear rate with a point of inflection. The frequency of vibration in the downstream branch is higher than that in the upstream branch. Except for the upstream branch in the skewed double T-junction, the frequency is higher than that in a single T-junction. The fluid vibrations are closely associated with the fluid interference created by the presence of the two side branches.展开更多
This paper addresses the issue of reciprocating compressors staggered labyrinth seal structure. The internal flow field of sealed structure, the displacement of cylinder and piston for different tooth profile angles a...This paper addresses the issue of reciprocating compressors staggered labyrinth seal structure. The internal flow field of sealed structure, the displacement of cylinder and piston for different tooth profile angles are analyzed synchronously using FLUENT software, and the effects of fluid-structure interaction on the performance of the labyrinth seal are revealed. The results indicate that with the growth of tooth profile angle, the leakage rate of labyrinth seal tends to decrease first, and then increase. The results of fluid-structure interaction analysis are close to those of actual engineering. The effect of fluid-structure interaction makes tiny deformation in calculation mesh of piston and cylinder structure, and the coupling interaction affects the performance of the labyrinth seal.展开更多
文摘Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.
文摘The present research investigates the influence of sheath solvent’s flow rate on the quality of electrospun ethyl cellulose (EC) nanofibers using a modified coaxial process. With 24 w/v % EC in ethanol as electrospinnable core fluid and ethanol as sheath fluid, EC nanofibers generated under different sheath flow rates were generated from the modified processes. FESEM observations demonstrate that the modified process is effective in preventing the clogging of spinneret for a smooth electrospinning. The key for the modified coaxial process is the reasonable selection of a sheath flow rate matching the drawing process of core EC fluid during the electrpospinning. The EC nanofibers’ diameters (D, nm) could be manipulated through the sheath-to-core flow rate ratio (f) as D = 819-1651f (R= 0.9754) within a suitable range of 0 to 0.25. The present paper provides useful data for the implementation of the modified coaxial process controllably to obtain polymer nanofibers with high quality.
基金supported by National Natural Science Foundation of China(Grant No.50876106)
文摘The research of different kinds of permeable non-Newtonian fluid flow is increasing day by day owing to the development of science,technology and production modes.It is most common to use power rate equation to describe such flows.However,this equation is nonlinear and very difficult to derive explicit exact analytical solutions.Generally,people can only derive approximate solutions with numerical methods.Recently,an advanced separating variables method which can derive exact analytical solutions easier is developed by Academician CAI Ruixian(the method of separating variables with addition).It is assumed that the unknown variable may be indicated as the sum of one-dimensional functions rather than the product in the common method of separating variables.Such method is used to solve the radial permeable power rate flow unsteady nonlinear equations on account of making the process simple.Four concise(no special functions and infinite series) exact analytical solutions is derived with the new method about this flow to develop the theory of non-Newtonian permeable fluid,which are exponential solution,two-dimensional function with time and radius,logarithmic solution,and double logarithmic solution,respectively.In addition,the method of separating variables with addition is developed and applied instead of the conventional multiplication one.It is proven to be promising and encouraging by the deducing.The solutions yielded will be valuable to the theory of the permeable power rate flow and can be used as standard solutions to check numerical methods and their differencing schemes,grid generation ways,etc.They also can be used to verify the accuracy,convergency and stability of the numerical solutions and to develop the numerical computational approaches.
文摘A T-junction is a fundamental fluid element prevalent in pipe networks of water supplies and power plants. In the present study, a double T-junction was investigated for flow instability and fluid vibration. Both axi-aligned and skewed double T-junctions are examined from viewpoint of flow instability. With single-phase flow in an open-ended double T-junction, fluid vibration is induced in both side branches because of a high shear rate with a point of inflection. The frequency of vibration in the downstream branch is higher than that in the upstream branch. Except for the upstream branch in the skewed double T-junction, the frequency is higher than that in a single T-junction. The fluid vibrations are closely associated with the fluid interference created by the presence of the two side branches.
基金the Science and Technology Projects of Liaoning Province(No.2012219020)the China Postdoctoral Science Foundation(No.2013M541249)
文摘This paper addresses the issue of reciprocating compressors staggered labyrinth seal structure. The internal flow field of sealed structure, the displacement of cylinder and piston for different tooth profile angles are analyzed synchronously using FLUENT software, and the effects of fluid-structure interaction on the performance of the labyrinth seal are revealed. The results indicate that with the growth of tooth profile angle, the leakage rate of labyrinth seal tends to decrease first, and then increase. The results of fluid-structure interaction analysis are close to those of actual engineering. The effect of fluid-structure interaction makes tiny deformation in calculation mesh of piston and cylinder structure, and the coupling interaction affects the performance of the labyrinth seal.