期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rigidity Symmetry Line for Thermodynamic Fluid Equations-of-State
1
作者 Leslie V. Woodcock 《Journal of Modern Physics》 2024年第5期613-633,共21页
We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by perco... We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by percolation transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of fluids, e.g. CO<sub>2</sub>, H<sub>2</sub>O and argon exhibit a symmetry characterised by the rigidity, ω = (dp/dρ)<sub>T</sub>, between gaseous and liquid states along any isotherm from critical (T<sub>c</sub>) to Boyle (T<sub>B</sub>) temperatures, on either side of the supercritical mesophase. Here, using experimental data for fluid argon, we investigate the low-density cluster physics description of an ideal dilute gas that obeys Dalton’s partial pressure law. Cluster expansions in powers of density relate to a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρ<sub>rs</sub>(T) = RT) to gas phase virial coefficients. We show that it is continuous in all derivatives, linear within stable fluid phase, and relates analytically to the Boyle-work line (BW) (w = (p/ρ)<sub>T</sub> = RT), and to percolation lines of gas (PB) and liquid (PA) phases by: ρ<sub>BW</sub>(T) = 2ρ<sub>PA</sub>(T) = 3ρ<sub>PB</sub>(T) = 3ρ<sub>RS</sub>(T)/2 for T T<sub>B</sub>. These simple relationships arise, because the higher virial coefficients (b<sub>n</sub>, n ≥ 4) cancel due to clustering equilibria, or become negligible at all temperatures (0 T T<sub>B</sub>)<sub> </sub>within the gas phase. The Boyle-work line (p/ρ<sub>BW</sub>)<sub>T</sub> is related exactly at lower densities as T → T<sub>B</sub>, and accurately for liquid densities, by ρ<sub>BW</sub>(T) = −(b<sub>2</sub>/b<sub>3</sub>)<sub>T</sub>. The RS line, ω(T) = RT, defines a new liquid-density ground-state physical constant (ρ<sub>RS</sub>(0) = (2/3)ρ<sub>BW</sub>(0) for argon). Given the gas-liquid rigidity symmetry, the entire thermodynamic state functions below T<sub>B</sub> are obtainable from b<sub>2</sub>(T). A BW-line ground-state crystal density ρ<sub>BW</sub>(0) can be defined by the pair potential minimum. The Ar<sub>2</sub> pair potential, ∅ij</sub>(r<sub>ij</sub>) determines b<sub>2</sub>(T) analytically for all T. This report, therefore, advances the salient objective of liquid-state theory: an argon p(ρ,T) Equation-of-state is obtained from ∅<sub>ij</sub>(r<sub>ij</sub>) for all fluid states, without any adjustable parameters. 展开更多
关键词 Liquid-State Theory Cluster Physics Percolation Lines fluid thermodynamics Boyle Line Rigidity-Symmetry Line
下载PDF
Major Factors Controlling Calcite Dissolution in Hydrothermal Karst Systems 被引量:1
2
作者 Wang Yanxin Tang Zhonghua(Faculty of Environmental Science and Geotechnique, China University of Geosciences, Wuhan 430074)Zhang Qinbao Wang Guoqin(Water Conservancy Bureau of Luliang Prefecture, Shanxi Province, Lishi 033000) 《Journal of Earth Science》 SCIE CAS CSCD 1996年第2期204-208,共5页
To find out major factors controlling the dissolution of calcite in hydrothermal systems, equations describing the relationship between Ca2+ concentration at equilibrium and partial pressure p (CO2) are deduced for di... To find out major factors controlling the dissolution of calcite in hydrothermal systems, equations describing the relationship between Ca2+ concentration at equilibrium and partial pressure p (CO2) are deduced for different thermodynamic conditions. The calculation results show that the intensity of calcite dissolution increases with the increase of p(CO2), temperatures around 363 K are the most favorable ambient temperature for hydrothermal karst development, and that the volume ratio of CO2 gas over water and the mass fraction of foreign ions also have some efrects on calcite dissolution. 展开更多
关键词 karst hydrothermal fluid thermodynamics modeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部