Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces.Current studies mainly focus on enhancing the driving force,which in turn is limited t...Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces.Current studies mainly focus on enhancing the driving force,which in turn is limited to the development of the magnetic material.Aiming at reducing the flow forces,a novel rotary direct drive servovalve(RDDV)is introduced in this paper.This RDDV servovalve is designed in a rotating structure and its axially symmetric spool rotates within a certain angle range in the valve chamber.The servovalve orifices are formed by the matching between the square wave shaped land on the spool and the rectangular ports on the sleeve.In order to study the RDDV servovalve performance,flow rate model and mechanical model are established,wherein flow rates and flow induced torques at different spool rotation angles or spool radiuses are obtained.The model analysis shows that the driving torque can be alleviated due to the proposed valve structure.Computational fluid dynamics(CFD)analysis using ANSYS/FLUENT is applied to evaluate and validate the theoretical analysis.In addition,experiments on the flow rate and the mechanical characteristic of the RDDV servovalve are carried out.Both simulation and experimental results conform to the results of the theoretical model analysis,which proves that this novel and innovative structure for direct drive servovalves can reduce the flow force on the spool and improve valve frequency response characteristics.This research proposes a novel rotary direct drive servovalve,which can reduce the flow forces effectively.展开更多
The relationship between fluid density and saturation and sonic wave velocity of rock samples taken from the WXS Depression in the South China Sea was studied by an oil-water replacement experiment under simulated in-...The relationship between fluid density and saturation and sonic wave velocity of rock samples taken from the WXS Depression in the South China Sea was studied by an oil-water replacement experiment under simulated in-situ temperature and pressure conditions.Two kinds of low-density oils(0.691 and 0.749 g/cm^3) and two kinds of high-density oils(0.834 and 0.873 g/cm^3) were used to saturate the rock samples at different oil-saturation states,and the saturated P- and S-wave velocities were measured.Through Gassmann's equation,the theoretical P- and S-wave velocities were also calculated by the fluid replacement method.With the comparison of the measured values and the theoretical values, this study comes to the following conclusions.(1) With the increase of oil saturation and the decrease of water saturation,the P-wave velocity of rock samples saturated by low-density oil increases and the changing rule is in accord with the effective fluid theory;the P-wave velocity of rock samples saturated by high-density oil decreases and the changing rule goes against the theory.(2) With the increase of oil density(namely 0.691→0.749→0.834→0.873 g/cm^3) when oil saturation is unchanged,P-wave velocity increases gradually.(3) The S-wave velocity is always stable and is not affected by the change of oil density and saturation.The results can be used to constrain pre-stack seismic inversion,and the variation rule of sonic wave velocity is valuable for hydrocarbon identification in the study area.展开更多
驱动臂是驱动液滑环与浮式生产储油轮(floating production storage and offloading,FPSO)之间发生相对转动的重要连接组件,避免连接传递偏心荷载引发密封失效是该装置的设计关键。依托南海奋进号FPSO液滑环的国产化项目,本文设计了一...驱动臂是驱动液滑环与浮式生产储油轮(floating production storage and offloading,FPSO)之间发生相对转动的重要连接组件,避免连接传递偏心荷载引发密封失效是该装置的设计关键。依托南海奋进号FPSO液滑环的国产化项目,本文设计了一种多点铰接形式的柔性连接驱动臂,通过有限元分析校核了驱动臂设计结构的静态强度和疲劳强度。通过开展驱动臂的动态摇摆与旋转试验,验证了往复摆动工况下驱动臂的驱动功能与载荷传递性能,为FPSO单点系泊液滑环的国产化提供了重要参考。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51375363)Xi’an Municipal Science and Technology Planning Project of China(Grant No.CX12504)Guangdong Provincial Key Technology Project on Emerging Industries of Strategic Importance of China(Grant No.2012A090100010)
文摘Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces.Current studies mainly focus on enhancing the driving force,which in turn is limited to the development of the magnetic material.Aiming at reducing the flow forces,a novel rotary direct drive servovalve(RDDV)is introduced in this paper.This RDDV servovalve is designed in a rotating structure and its axially symmetric spool rotates within a certain angle range in the valve chamber.The servovalve orifices are formed by the matching between the square wave shaped land on the spool and the rectangular ports on the sleeve.In order to study the RDDV servovalve performance,flow rate model and mechanical model are established,wherein flow rates and flow induced torques at different spool rotation angles or spool radiuses are obtained.The model analysis shows that the driving torque can be alleviated due to the proposed valve structure.Computational fluid dynamics(CFD)analysis using ANSYS/FLUENT is applied to evaluate and validate the theoretical analysis.In addition,experiments on the flow rate and the mechanical characteristic of the RDDV servovalve are carried out.Both simulation and experimental results conform to the results of the theoretical model analysis,which proves that this novel and innovative structure for direct drive servovalves can reduce the flow force on the spool and improve valve frequency response characteristics.This research proposes a novel rotary direct drive servovalve,which can reduce the flow forces effectively.
基金supported by the Science and Technology Research Key Project of Ministry of Education (Grant No.109035)the National Natural Science Foundation Key Project(Grant No.40830423)the Key Project of Students Extra-curricular Science and Technology Research Program of Schlumberger(Grant No.SLBX0908)
文摘The relationship between fluid density and saturation and sonic wave velocity of rock samples taken from the WXS Depression in the South China Sea was studied by an oil-water replacement experiment under simulated in-situ temperature and pressure conditions.Two kinds of low-density oils(0.691 and 0.749 g/cm^3) and two kinds of high-density oils(0.834 and 0.873 g/cm^3) were used to saturate the rock samples at different oil-saturation states,and the saturated P- and S-wave velocities were measured.Through Gassmann's equation,the theoretical P- and S-wave velocities were also calculated by the fluid replacement method.With the comparison of the measured values and the theoretical values, this study comes to the following conclusions.(1) With the increase of oil saturation and the decrease of water saturation,the P-wave velocity of rock samples saturated by low-density oil increases and the changing rule is in accord with the effective fluid theory;the P-wave velocity of rock samples saturated by high-density oil decreases and the changing rule goes against the theory.(2) With the increase of oil density(namely 0.691→0.749→0.834→0.873 g/cm^3) when oil saturation is unchanged,P-wave velocity increases gradually.(3) The S-wave velocity is always stable and is not affected by the change of oil density and saturation.The results can be used to constrain pre-stack seismic inversion,and the variation rule of sonic wave velocity is valuable for hydrocarbon identification in the study area.
文摘驱动臂是驱动液滑环与浮式生产储油轮(floating production storage and offloading,FPSO)之间发生相对转动的重要连接组件,避免连接传递偏心荷载引发密封失效是该装置的设计关键。依托南海奋进号FPSO液滑环的国产化项目,本文设计了一种多点铰接形式的柔性连接驱动臂,通过有限元分析校核了驱动臂设计结构的静态强度和疲劳强度。通过开展驱动臂的动态摇摆与旋转试验,验证了往复摆动工况下驱动臂的驱动功能与载荷传递性能,为FPSO单点系泊液滑环的国产化提供了重要参考。